Two more characterizations of König-Egerváry graphs

Abstract Let G be a simple graph with vertex set V ( G ) . A set S ⊆ V ( G ) is independent if no two vertices from S are adjacent. The graph G is known to be Konig–Egervary if α ( G ) + μ ( G ) = | V ( G ) | , where α ( G ) denotes the size of a maximum independent set and μ ( G ) is the cardinality of a maximum matching. A nonempty collection Γ of maximum independent sets is Konig–Egervary if | ⋃ Γ | + | ⋂ Γ | = 2 α ( G ) (Jarden et al., 2015). In this paper, we prove that G is a Konig–Egervary graph if and only if for every two maximum independent sets S 1 , S 2 of G , there is a matching from V ( G ) − S 1 ∪ S 2 into S 1 ∩ S 2 . Moreover, the same is true, when instead of two sets S 1 and S 2 we consider an arbitrary Konig–Egervary collection.

[1]  Vadim E. Levit,et al.  On alpha+-stable Ko"nig-Egerváry graphs , 2003, Discret. Math..

[2]  Vadim E. Levit,et al.  Combinatorial properties of the family of maximum stable sets of a graph , 2002, Discret. Appl. Math..

[3]  Craig E. Larson,et al.  The critical independence number and an independence decomposition , 2009, Eur. J. Comb..

[4]  Andrew D. King Hitting all maximum cliques with a stable set using lopsided independent transversals , 2009, J. Graph Theory.

[5]  Taylor Short,et al.  On Some Conjectures Concerning Critical Independent Sets of a Graph , 2015, Electron. J. Comb..

[6]  Vadim E. Levit,et al.  Critical and Maximum Independent Sets of a Graph , 2018, Discret. Appl. Math..

[7]  Boros Edre,et al.  On the number of vertices belonging to all maximum stable sets of a graph , 1999 .

[8]  Daniel W. Cranston,et al.  A Note on Coloring Vertex-transitive Graphs , 2014, Electron. J. Comb..

[9]  Mitre Costa Dourado,et al.  Forbidden subgraphs and the König-Egerváry property , 2013, Discret. Appl. Math..

[10]  Vadim E. Levit,et al.  On maximum matchings in König-Egerváry graphs , 2013, Discret. Appl. Math..

[11]  F Stersoul,et al.  A characterization of the graphs in which the transversal number equals the matching number , 1979, J. Comb. Theory, Ser. B.

[12]  Vadim E. Levit,et al.  A Set and Collection Lemma , 2011, Electron. J. Comb..

[13]  Katherine Edwards,et al.  A Note on Hitting Maximum and Maximal Cliques With a Stable Set , 2011, J. Graph Theory.

[14]  Vadim E. Levit,et al.  Critical Independent Sets and König–Egerváry Graphs , 2009, Graphs Comb..

[15]  Robert W. Deming,et al.  Independence numbers of graphs-an extension of the Koenig-Egervary theorem , 1979, Discret. Math..

[16]  Vangelis Th. Paschos,et al.  A generalization of König-Egervary graphs and heuristics for the maximum independent set problem with improved approximation ratios , 1997 .

[17]  Peter L. Hammer,et al.  Node-weighted graphs having the König-Egerváry property , 1984 .

[18]  László Lovász,et al.  Ear-decompositions of matching-covered graphs , 1983, Comb..

[19]  Raffaele Mosca,et al.  Polynomial Time Recognition of Essential Graphs Having Stability Number Equal to Matching Number , 2015, Graphs Comb..

[20]  Andras Hajnal,et al.  A Theorem on k-Saturated Graphs , 1965, Canadian Journal of Mathematics.

[21]  Landon Rabern,et al.  On hitting all maximum cliques with an independent set , 2009, J. Graph Theory.