Analysis of the Viscosity of Dilute Suspensions Beyond Einstein’s Formula

We provide a mathematical analysis of the effective viscosity of suspensions of spherical particles in a Stokes flow, at low solid volume fraction $\phi$. Our objective is to go beyond the Einstein's approximation $\mu_{eff}=(1+\frac{5}{2}\phi)\mu$. Assuming a lower bound on the minimal distance between the $N$ particles, we are able to identify the $O(\phi^2)$ correction to the effective viscosity, which involves pairwise particle interactions. Applying the methodology developped over the last years on Coulomb gases, we are able to tackle the limit $N \rightarrow +\infty$ of the $O(\phi^2)$-correction, and provide explicit formula for this limit when the particles centers can be described by either periodic or stationary ergodic point processes.

[1]  H. Brenner,et al.  Spatially periodic suspensions of convex particles in linear shear flows. I. Description and kinematics , 1985 .

[2]  Sylvia Serfaty,et al.  From the Ginzburg-Landau Model to Vortex Lattice Problems , 2010, 1011.4617.

[3]  B. Błaszczyszyn Lecture Notes on Random Geometric Models --- Random Graphs, Point Processes and Stochastic Geometry , 2017 .

[4]  H. Hasimoto On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres , 1959, Journal of Fluid Mechanics.

[5]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[6]  Joseph B. Keller,et al.  Extremum principles for slow viscous flows with applications to suspensions , 1967, Journal of Fluid Mechanics.

[7]  Joseph B. Keller,et al.  Effective viscosity of a periodic suspension , 1984, Journal of Fluid Mechanics.

[8]  J. Velázquez,et al.  The Method of Reflections, Homogenization and Screening for Poisson and Stokes Equations in Perforated Domains , 2016, 1603.06750.

[9]  E. J. Hinch,et al.  An averaged-equation approach to particle interactions in a fluid suspension , 1977, Journal of Fluid Mechanics.

[10]  Richard M. Höfer Sedimentation of Inertialess Particles in Stokes Flows , 2016 .

[11]  D. Gérard-Varet,et al.  Wall laws for fluid flows at a boundary with random roughness , 2006, math/0606768.

[12]  R. Clausius,et al.  Die mechanische Behandlung der Electricität , 1879 .

[13]  Felix Otto,et al.  Identification of the Dilute Regime in Particle Sedimentation , 2004 .

[14]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[15]  R. W. O'Brien,et al.  A method for the calculation of the effective transport properties of suspensions of interacting particles , 1979, Journal of Fluid Mechanics.

[16]  Laurent Desvillettes,et al.  The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow , 2008 .

[17]  Jeffrey F. Morris,et al.  A Physical Introduction to Suspension Dynamics: MICROHYDRODYNAMICS , 2011 .

[18]  S. Kozlov,et al.  DARCY EQUATION FOR RANDOM POROUS MEDIA , 1996 .

[19]  A. Einstein Eine neue Bestimmung der Moleküldimensionen , 1905 .

[20]  N. Sait̂o,et al.  Concentration Dependence of the Viscosity of High Polymer Solutions. I , 1950 .

[21]  Amina Mecherbet Sedimentation of particles in Stokes flow , 2018, Kinetic & Related Models.

[22]  Esko Valkeila,et al.  An Introduction to the Theory of Point Processes, Volume II: General Theory and Structure, 2nd Edition by Daryl J. Daley, David Vere‐Jones , 2008 .

[23]  Einstein-like approximation for homogenization with small concentration. I—Elliptic problems , 1985 .

[24]  Jean-Yves Chemin,et al.  Perfect Incompressible Fluids , 1998 .

[25]  Alexei Borodin,et al.  Renormalized Energy Concentration in Random Matrices , 2012, 1201.2853.

[26]  S. Serfaty,et al.  Higher‐Dimensional Coulomb Gases and Renormalized Energy Functionals , 2013, 1307.2805.

[27]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[28]  Habib Ammari,et al.  Effective viscosity properties of dilute suspensions of arbitrarily shaped particles , 2012, Asymptot. Anal..

[29]  T Lévy,et al.  Einstein-like approximation for homogenization with small concentration. II—Navier-Stokes equation , 1985 .

[30]  Brian M. Haines,et al.  A Proof of Einstein's Effective Viscosity for a Dilute Suspension of Spheres , 2011, SIAM J. Math. Anal..

[31]  S. Serfaty,et al.  2D Coulomb Gases and the Renormalized Energy , 2012, 1201.3503.

[32]  H. Brenner,et al.  Spatially periodic suspensions of convex particles in linear shear flows. III. Dilute arrays of spheres suspended in Newtonian fluids , 1983 .

[33]  A. Gloria,et al.  Analyticity of Homogenized Coefficients Under Bernoulli Perturbations and the Clausius–Mossotti Formulas , 2015, 1502.03303.

[34]  Matthieu Hillairet,et al.  Effective viscosity of a polydispersed suspension , 2019, Journal de Mathématiques Pures et Appliquées.

[35]  George Keith Batchelor,et al.  An Introduction to Fluid Dynamics. , 1969 .

[36]  H. Brenner,et al.  Global homogenization of a dilute suspension of spheres: Suspension rheology , 2020, 2003.01480.

[37]  Sylvia Serfaty,et al.  Coulomb Gases and Ginzburg - Landau Vortices , 2014, 1403.6860.

[38]  Giovanni P. Galdi,et al.  An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .

[39]  Edmund Atkinson,et al.  A Treatise on Electricity and Magnetism, Vol. 1 , 2010 .

[40]  G. Batchelor,et al.  The determination of the bulk stress in a suspension of spherical particles to order c2 , 1972, Journal of Fluid Mechanics.

[41]  P. Gamblin,et al.  On three-dimensional vortex patches , 1995 .

[42]  Barbara Niethammer,et al.  A Local Version of Einstein's Formula for the Effective Viscosity of Suspensions , 2019, SIAM J. Math. Anal..

[43]  G. Batchelor,et al.  The hydrodynamic interaction of two small freely-moving spheres in a linear flow field , 1972, Journal of Fluid Mechanics.