Non-consistent approximations of self-adjoint eigenproblems: application to the supercell method

In this article, we introduce a general theoretical framework to analyze non-consistent approximations of the discrete eigenmodes of a self-adjoint operator. We focus in particular on the discrete eigenvalues laying in spectral gaps. We first provide a priori error estimates on the eigenvalues and eigenvectors in the absence of spectral pollution. We then show that the supercell method for perturbed periodic Schrödinger operators falls into the scope of our study. We prove that this method is spectral pollution free, and we derive optimal convergence rates for the planewave discretization method, taking numerical integration errors into account. Some numerical illustrations are provided.

[1]  Sofiane Soussi,et al.  Convergence of the Supercell Method for Defect Modes Calculations in Photonic Crystals , 2005, SIAM J. Numer. Anal..

[2]  Robert Scheichl,et al.  Planewave expansion methods for photonic crystal fibres , 2013 .

[3]  J. Rappaz,et al.  On spectral approximation. Part 1. The problem of convergence , 1978 .

[4]  Marco Marletta,et al.  Eigenvalues in spectral gaps of differential operators , 2012 .

[5]  Anders C. Hansen,et al.  On the approximation of spectra of linear operators on Hilbert spaces , 2008 .

[6]  R. Goodrich,et al.  Spectral approximation , 1986 .

[7]  Lyonell Boulton NON-VARIATIONAL APPROXIMATION OF DISCRETE EIGENVALUES OF SELF-ADJOINT OPERATORS , 2005 .

[8]  F. Chatelin Spectral approximation of linear operators , 2011 .

[9]  J. Rappaz,et al.  On spectral pollution in the finite element approximation of thin elastic “membrane” shells , 1997 .

[10]  Jean Descloux,et al.  Essential Numerical Range of an Operator with Respect to a Coercive form and the Approximation of Its Spectrum by the Galerkin Method , 1981 .

[11]  Virginie Ehrlacher,et al.  Some mathematical models in quantum chemistry and uncertainty quantification , 2012 .

[12]  Jr. Wendell H. Mills,et al.  Optimal Error Estimates for the Finite Element Spectral Approximation of Noncompact Operators , 1979 .

[13]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[14]  Lyonell Boulton,et al.  On approximation of the eigenvalues of perturbed periodic Schrödinger operators , 2007, math/0702420.

[15]  JEAN DESCLOUX,et al.  On spectral approximation. Part 2. Error estimates for the Galerkin method , 1978 .

[16]  Daniele Boffi,et al.  On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form , 2000, Math. Comput..

[17]  D. Arnold Differential complexes and numerical stability , 2002, math/0212391.

[18]  Jr. Wendell H. Mills,et al.  The Resolvent Stability Condition for Spectra Convergence with Application to the Finite Element Approximation of Noncompact Operators , 1979 .

[19]  Nabile Boussaid,et al.  Non-variational computation of the eigenstates of Dirac operators with radially symmetric potentials , 2008, 0808.0228.

[20]  Yvon Maday,et al.  Periodic Schrödinger Operators with Local Defects and Spectral Pollution , 2011, SIAM J. Numer. Anal..

[21]  Michael Levitin,et al.  Spectral pollution and second-order relative spectra for self-adjoint operators , 2002 .

[22]  Mathieu Lewin,et al.  Spectral pollution and how to avoid it , 2008, 0812.2153.

[23]  B. Simon,et al.  Schrödinger Semigroups , 2007 .

[24]  V M Shabaev,et al.  Dual kinetic balance approach to basis-set expansions for the dirac equation. , 2004, Physical review letters.

[25]  Monique Dauge,et al.  Numerical approximation of the spectra of non-compact operators arising in buckling problems , 2002, J. Num. Math..

[26]  E B Davies,et al.  Spectral Pollution , 2002 .

[27]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[28]  Nabile Boussaid,et al.  Generalised Weyl theorems and spectral pollution in the Galerkin method , 2010, 1011.3634.