Third-order superintegrable systems separating in polar coordinates
暂无分享,去创建一个
[1] W. Miller,et al. Superintegrability and higher-order constants for classical and quantum systems , 2010, 1002.2665.
[2] I. Marquette. Superintegrability and higher order polynomial algebras , 2009, 0908.4399.
[3] W. Miller,et al. Families of classical subgroup separable superintegrable systems , 2009, 0912.3158.
[4] C. Quesne. Superintegrability of the Tremblay–Turbiner–Winternitz quantum Hamiltonians on a plane for odd k , 2009, 0911.4404.
[5] P. Winternitz,et al. Periodic orbits for an infinite family of classical superintegrable systems , 2009, 0910.0299.
[6] I. Marquette. Superintegrability and higher order polynomial algebras II , 2009, 0908.4432.
[7] I. Marquette. Supersymmetry as a method of obtaining new superintegrable systems with higher order integrals of motion , 2009, 0908.1246.
[8] P. Winternitz. Superintegrability with second- and third-order integrals of motion , 2009 .
[9] P. Winternitz,et al. An infinite family of solvable and integrable quantum systems on a plane , 2009, 0904.0738.
[10] W. Miller,et al. Structure Theory for Second Order 2D Superintegrable Systems with 1-Parameter Potentials , 2009, 0901.3081.
[11] I. Marquette. Superintegrability with third order integrals of motion, cubic algebras and supersymmetric quantum mechanics II:Painleve transcendent potentials , 2008, 0811.1568.
[12] I. Marquette. Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. I. Rational function potentials , 2008, 0807.2858.
[13] W. Miller,et al. Models for quadratic algebras associated with second order superintegrable systems in 2D , 2008, 0801.2848.
[14] P. Winternitz,et al. Superintegrable systems with third-order integrals of motion , 2007, 0711.4783.
[15] P. Winternitz,et al. Polynomial Poisson algebras for classical superintegrable systems with a third-order integral of motion , 2006, math-ph/0608021.
[16] C. Daskaloyannis,et al. Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold , 2004, math-ph/0412055.
[17] S. Gravel. Hamiltonians separable in cartesian coordinates and third-order integrals of motion , 2003, math-ph/0302028.
[18] S. Gravel. Superintegrable Systems with Third-Order Integrals in Classical and Quantum Mechanics , 2003 .
[19] S. Gravel,et al. Superintegrability with third-order integrals in quantum and classical mechanics , 2002, math-ph/0206046.
[20] P. Tempesta,et al. Superintegrable systems in quantum mechanics and classical Lie theory , 2001 .
[21] P. Tempesta,et al. Exact solvability of superintegrable systems , 2000, hep-th/0011209.
[22] Christopher M. Cosgrove,et al. Higher‐Order Painlevé Equations in the Polynomial Class II: Bureau Symbol P1 , 2006 .
[23] C. Cosgrove. Chazy Classes IX–XI Of Third‐Order Differential Equations , 2000 .
[24] A. Tsiganov. The Drach superintegrable systems , 2000, nlin/0001053.
[25] C. Cosgrove. Higher‐order Painlevé Equations in the Polynomial Class I. Bureau Symbol P2 , 2000 .
[26] J. Hietarinta. Pure quantum integrability , 1997, solv-int/9708010.
[27] M. F. Ranada. Superintegrable n=2 systems, quadratic constants of motion, and potentials of Drach , 1997 .
[28] L. Vinet,et al. Superintegrable systems: Polynomial algebras and quasi-exactly solvable Hamiltonians , 1995 .
[29] C. M. Cosgrove,et al. Painlevé Classification of a Class of Differential Equations of the Second Order and Second Degree , 1993 .
[30] A. Zhedanov,et al. Mutual integrability, quadratic algebras, and dynamical symmetry , 1992 .
[31] J. Hietarinta. Solvability in quantum mechanics and classically superfluous invariants , 1989 .
[32] S. Wojciechowski. Superintegrability of the Calogero-Moser system☆ , 1983 .
[33] M. J. Englefield,et al. Third-order constants of motion in quantum mechanics , 1977 .
[34] P. Winternitz,et al. A systematic search for nonrelativistic systems with dynamical symmetries , 1967 .
[35] Y. Smorodinskii,et al. SYMMETRY GROUPS IN CLASSICAL AND QUANTUM MECHANICS , 1966 .
[36] P. Winternitz,et al. ON HIGHER SYMMETRIES IN QUANTUM MECHANICS , 1965 .