Third-order superintegrable systems separating in polar coordinates

A complete classification of quantum and classical superintegrable systems in E2 is presented that allow the separation of variables in polar coordinates and admit an additional integral of motion of order 3 in the momentum. New quantum superintegrable systems are discovered for which the potential is expressed in terms of the sixth Painlevé transcendent or in terms of the Weierstrass elliptic function.

[1]  W. Miller,et al.  Superintegrability and higher-order constants for classical and quantum systems , 2010, 1002.2665.

[2]  I. Marquette Superintegrability and higher order polynomial algebras , 2009, 0908.4399.

[3]  W. Miller,et al.  Families of classical subgroup separable superintegrable systems , 2009, 0912.3158.

[4]  C. Quesne Superintegrability of the Tremblay–Turbiner–Winternitz quantum Hamiltonians on a plane for odd k , 2009, 0911.4404.

[5]  P. Winternitz,et al.  Periodic orbits for an infinite family of classical superintegrable systems , 2009, 0910.0299.

[6]  I. Marquette Superintegrability and higher order polynomial algebras II , 2009, 0908.4432.

[7]  I. Marquette Supersymmetry as a method of obtaining new superintegrable systems with higher order integrals of motion , 2009, 0908.1246.

[8]  P. Winternitz Superintegrability with second- and third-order integrals of motion , 2009 .

[9]  P. Winternitz,et al.  An infinite family of solvable and integrable quantum systems on a plane , 2009, 0904.0738.

[10]  W. Miller,et al.  Structure Theory for Second Order 2D Superintegrable Systems with 1-Parameter Potentials , 2009, 0901.3081.

[11]  I. Marquette Superintegrability with third order integrals of motion, cubic algebras and supersymmetric quantum mechanics II:Painleve transcendent potentials , 2008, 0811.1568.

[12]  I. Marquette Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. I. Rational function potentials , 2008, 0807.2858.

[13]  W. Miller,et al.  Models for quadratic algebras associated with second order superintegrable systems in 2D , 2008, 0801.2848.

[14]  P. Winternitz,et al.  Superintegrable systems with third-order integrals of motion , 2007, 0711.4783.

[15]  P. Winternitz,et al.  Polynomial Poisson algebras for classical superintegrable systems with a third-order integral of motion , 2006, math-ph/0608021.

[16]  C. Daskaloyannis,et al.  Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold , 2004, math-ph/0412055.

[17]  S. Gravel Hamiltonians separable in cartesian coordinates and third-order integrals of motion , 2003, math-ph/0302028.

[18]  S. Gravel Superintegrable Systems with Third-Order Integrals in Classical and Quantum Mechanics , 2003 .

[19]  S. Gravel,et al.  Superintegrability with third-order integrals in quantum and classical mechanics , 2002, math-ph/0206046.

[20]  P. Tempesta,et al.  Superintegrable systems in quantum mechanics and classical Lie theory , 2001 .

[21]  P. Tempesta,et al.  Exact solvability of superintegrable systems , 2000, hep-th/0011209.

[22]  Christopher M. Cosgrove,et al.  Higher‐Order Painlevé Equations in the Polynomial Class II: Bureau Symbol P1 , 2006 .

[23]  C. Cosgrove Chazy Classes IX–XI Of Third‐Order Differential Equations , 2000 .

[24]  A. Tsiganov The Drach superintegrable systems , 2000, nlin/0001053.

[25]  C. Cosgrove Higher‐order Painlevé Equations in the Polynomial Class I. Bureau Symbol P2 , 2000 .

[26]  J. Hietarinta Pure quantum integrability , 1997, solv-int/9708010.

[27]  M. F. Ranada Superintegrable n=2 systems, quadratic constants of motion, and potentials of Drach , 1997 .

[28]  L. Vinet,et al.  Superintegrable systems: Polynomial algebras and quasi-exactly solvable Hamiltonians , 1995 .

[29]  C. M. Cosgrove,et al.  Painlevé Classification of a Class of Differential Equations of the Second Order and Second Degree , 1993 .

[30]  A. Zhedanov,et al.  Mutual integrability, quadratic algebras, and dynamical symmetry , 1992 .

[31]  J. Hietarinta Solvability in quantum mechanics and classically superfluous invariants , 1989 .

[32]  S. Wojciechowski Superintegrability of the Calogero-Moser system☆ , 1983 .

[33]  M. J. Englefield,et al.  Third-order constants of motion in quantum mechanics , 1977 .

[34]  P. Winternitz,et al.  A systematic search for nonrelativistic systems with dynamical symmetries , 1967 .

[35]  Y. Smorodinskii,et al.  SYMMETRY GROUPS IN CLASSICAL AND QUANTUM MECHANICS , 1966 .

[36]  P. Winternitz,et al.  ON HIGHER SYMMETRIES IN QUANTUM MECHANICS , 1965 .