On the formation of excited state positronium in vacuum by positron impact on untreated surfaces

The formation of excited state (2P) positronium following the bombardment of untreated beryllium, copper and gold surfaces by positrons in the energy range 10-500 eV is reported. This investigation finds emission efficiencies in the low per cent region, in accord with one other study of similar samples. Timing spectra between the de-excitation Lyman-α photons and annihilation gamma rays with a statistical accuracy superior to that of other studies have been generated. The interpretation of the data, including the production mechanism of the excited atoms, is discussed.

[1]  Tan,et al.  Field ionization of strongly magnetized rydberg positronium: A new physical mechanism for positron accumulation , 2000, Physical review letters.

[2]  S. Karshenboim,et al.  COMPLETE RESULTS FOR POSITRONIUM ENERGY LEVELS AT ORDER MALPHA 6 , 1997, hep-ph/9709387.

[3]  A. Knights,et al.  The effect of thermalisation length and work function on epithermal positron emission from solids , 1996 .

[4]  A. Knights,et al.  Relative probabilities of work-function and epithermal positron re-emission from silver , 1995 .

[5]  A. Knights,et al.  Energy spectroscopy of positrons re-emitted from polycrystalline tungsten , 1994 .

[6]  H. Schneider,et al.  Positronium spectroscopy at a LINAC-based slow positron source , 1993 .

[7]  Arnold,et al.  Precise measurement of n=2 positronium fine-structure intervals. , 1993, Physical review letters.

[8]  Conti,et al.  Formation of n=2 positronium from untreated metal surfaces. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[9]  Schoepf,et al.  Observation of Ps(n=2) from well-characterized metal surfaces in ultrahigh vacuum. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[10]  Fell Order alpha 4 ln alpha -1 fRYD corrections to the n=1 and n=2 energy levels of positronium. , 1992, Physical review letters.

[11]  A. Mills,et al.  Positron Workfunction of Diamond C(100) Surfaces , 1992 .

[12]  G. Werth,et al.  Energy dependence of excited positronium formation at a molybdenum surface , 1990 .

[13]  M. Charlton Antihydrogen production in collisions of antiprotons with excited states of positronium , 1990 .

[14]  K. Lynn,et al.  Interaction of positron beams with surfaces, thin films, and interfaces , 1988 .

[15]  D. J. Marshall,et al.  Cathodoluminescence of geological materials , 1988 .

[16]  Rich,et al.  Measurements of the 23S1-2(3)PJ (J=0,1,2) fine-structure splittings in positronium. , 1987, Physical review letters.

[17]  Rosenberg,et al.  Production of energetic positronium at metal surfaces. , 1986, Physical review. B, Condensed matter.

[18]  M. Charlton,et al.  Excited state positronium formation in low density gases , 1985 .

[19]  A. Mills,et al.  Observations of positronium Lyman - α radiation , 1975 .

[20]  J. Risley Design Parameters for the Cylindrical Mirror Energy Analyzer , 1972 .

[21]  M. Deutsch EVIDENCE FOR THE FORMATION OF POSITRONIUM IN GASES , 1951 .

[22]  J. L. Powell,et al.  Three-Photon Annihilation of an Electron-Positron Pair , 1949 .