The Use of the Least-Squares Probabilistic-Collocation Method in Decision Making in the Presence of Uncertainty for Chemical-Enhanced-Oil-Recovery Processes

[1]  R. Oka,et al.  Dynamic Programming , 1993, The Mathematical Gazette.

[2]  L. Lake,et al.  Enhanced Oil Recovery , 2017 .

[3]  Peter R. King,et al.  Robust quantification of parametric uncertainty for surfactant–polymer flooding , 2014, Computational Geosciences.

[4]  Peter R. King,et al.  Decision Making Under Uncertainty: Applying the Least-Squares Monte Carlo Method in Surfactant-Flooding Implementation , 2013 .

[5]  P. King,et al.  Uncertainty Quantification of a Chemically Enhanced Oil Recovery Process: Applying the Probabilistic Collocation Method to a Surfactant-Polymer Flood , 2013 .

[6]  Julian Richard Barnes,et al.  Surfactant Systems for EOR in High-Temperature, High-salinity Environments , 2012 .

[7]  Marinus J. Faber,et al.  Alkaline/Surfactant/Polymer Flood: From the Laboratory to the Field , 2011 .

[8]  Clarence A. Miller,et al.  Recent Advances in Surfactant EOR , 2011 .

[9]  Mohammad Saber Karambeigi,et al.  Neuro-simulation modeling of chemical flooding , 2011 .

[10]  Heng Li,et al.  A Comparative Study of the Probabilistic-Collocation and Experimental-Design Methods for Petroleum-Reservoir Uncertainty Quantification , 2011 .

[11]  Martin J. Blunt,et al.  The Design and Optimization of Polymer Flooding under Uncertainty , 2011 .

[12]  James J. Sheng,et al.  Modern Chemical Enhanced Oil Recovery: Theory and Practice , 2010 .

[13]  H. Bijl,et al.  Probabilistic collocation used in a Two-Step approached for efficient uncertainty quantification in computational fluid dynamics , 2009 .

[14]  Reidar Brumer Bratvold,et al.  Valuing Oil and Gas Options by Least-Squares Monte Carlo Simulation , 2009 .

[15]  Heng Li,et al.  Efficient and Accurate Quantification of Uncertainty for Multiphase Flow With the Probabilistic Collocation Method , 2009 .

[16]  Guang Lin,et al.  An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media , 2009 .

[17]  George E. Karniadakis,et al.  The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications , 2008, J. Comput. Phys..

[18]  David G. Laughton,et al.  Real Asset Valuation: A Back-to-Basics Approach , 2008 .

[19]  Sunil Kumar,et al.  Optimizations in financial engineering: The Least-Squares Monte Carlo method of Longstaff and Schwartz , 2008, 2008 IEEE International Symposium on Parallel and Distributed Processing.

[20]  Manuel Moreno,et al.  On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives , 2007 .

[21]  Dongxiao Zhang,et al.  Probabilistic collocation method for flow in porous media: Comparisons with other stochastic methods , 2007 .

[22]  Warrren B Powell Approximate Dynamic Programming - Solving the Curses of Dimensionality , 2007, Wiley Series in Probability and Statistics.

[23]  Mircea Grigoriu,et al.  Convergence properties of polynomial chaos approximations for L2 random variables. , 2007 .

[24]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[25]  Y. P. Cheong,et al.  Experimental Design and Analysis Methods for Assessing Volumetric Uncertainties , 2005 .

[26]  Lars Stentoft Assessing the Least Squares Monte-Carlo Approach to American Option Valuation , 2004 .

[27]  L. Mathelin,et al.  A Stochastic Collocation Algorithm for Uncertainty Analysis , 2003 .

[28]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[29]  Martin J. Blunt,et al.  Tenth SPE Comparative Solution Project: a comparison of upscaling techniques , 2001 .

[30]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[31]  A. Miller,et al.  Effects of Polymer Adsorption and Flow Behavior on Two-Phase Flow in Porous Media , 2000 .

[32]  Menner A. Tatang,et al.  An efficient method for parametric uncertainty analysis of numerical geophysical models , 1997 .

[33]  Nicholas P. Hankins,et al.  Case studies for the feasibility of sweep improvement in surfactant-assisted waterflooding , 1997 .

[34]  Eduardo S. Schwartz,et al.  Investment Under Uncertainty. , 1994 .

[35]  W. Gautschi Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules , 1993, TOMS.

[36]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[37]  Vernon H. Schievelbein,et al.  Surfactant Flooding Carbonate Reservoirs , 1987 .

[38]  D. L. Dauben,et al.  A review and statistical analysis of micellar-polymer field test data: Topical report , 1986 .

[39]  W. W. Weiss,et al.  Planning and Implementing a Large-Scale Polymer Flood , 1985 .

[40]  C. Brown,et al.  The Evaluation of Uncertainty in Surfactant EOR Performance Prediction , 1984 .

[41]  Ben Wang,et al.  SENSITIVITY STUDY OF MICELLAR/POLYMER FLOODING. , 1979 .

[42]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[43]  N. Wiener The Homogeneous Chaos , 1938 .

[44]  Leopold Fejér,et al.  On the infinite sequences arising in the theories of harmonic analysis, of interpolation, and of mechanical quadratures , 1933 .

[45]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[46]  Gary A. Pope,et al.  Measurement and analysis of surfactant retention , 2012 .

[47]  Christian Bender,et al.  Least-Squares Monte Carlo for Backward SDEs , 2012 .

[48]  Jiang Xie,et al.  Efficient and Robust Uncertainty Quantification in Reservoir Simulation with Polynomial Chaos Expansions and Non-intrusive Spectral Projection , 2011, ANSS 2011.

[49]  Wisup Bae,et al.  Development of Isotherm Polymer/Surfactant Adsorption Models in Chemical Flooding , 2011 .

[50]  G. Michael Shook,et al.  Interwell Tracer Tests to Optimize Operating Conditions for a Surfactant Field Trial: Design, Evaluation and Implications , 2011 .

[51]  Reidar Brumer Bratvold,et al.  Taking Real Options Into the Real World: Asset Valuation Through Option Simulation , 2009 .

[52]  Gonzalo Cortazar,et al.  The valuation of multidimensional American real options using the LSM simulation method , 2008, Comput. Oper. Res..

[53]  Harry Surkalo,et al.  Economics of Field Proven Chemical Flooding Technologies , 2008 .

[54]  Gary A. Pope,et al.  Optimization of chemical flooding in a mixed-wet dolomite reservoir , 2006 .

[55]  Sara Thomas,et al.  Chemical EOR: The Past - Does It Have a Future? (Russian) , 2006 .

[56]  Kamy Sepehrnoori,et al.  An Efficient Reservoir-Simulation Approach To Design and Optimize Improved Oil-Recovery-Processes With Distributed Computing , 2005 .

[57]  Menner A Tatang,et al.  Direct incorporation of uncertainty in chemical and environmental engineering systems , 1995 .

[58]  W. Gerbacia,et al.  The Evaluation Of Surfactant Systems For Oil Recovery Using Statistical Design Principles And Analysis , 1978 .

[59]  C. A. Kossack,et al.  The Sensitivity of Micellar Flooding to Reservoir Heterogeneities , 1976 .

[60]  W. B. Gogarty,et al.  Status of Surfactant or Micellar Methods , 1976 .