Improved MR to CT synthesis for PET/MR attenuation correction using Imitation Learning
暂无分享,去创建一个
Brian F. Hutton | M. Jorge Cardoso | Sébastien Ourselin | David Atkinson | Kris Thielemans | Thomas Varsavsky | Kerstin Kläser | Pawel Markiewicz | S. Ourselin | D. Atkinson | B. Hutton | T. Varsavsky | P. Markiewicz | K. Thielemans | Kerstin Kläser | Thomas Varsavsky
[1] David Atkinson,et al. NiftyPET: a High-throughput Software Platform for High Quantitative Accuracy and Precision PET Imaging and Analysis , 2017, Neuroinformatics.
[2] Ninon Burgos,et al. A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients , 2016, NeuroImage.
[3] Armin Kolb,et al. Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? , 2008, Seminars in nuclear medicine.
[4] Sébastien Ourselin,et al. Fast free-form deformation using graphics processing units , 2010, Comput. Methods Programs Biomed..
[5] Aaron Carass,et al. Unpaired Brain MR-to-CT Synthesis Using a Structure-Constrained CycleGAN , 2018, DLMIA/ML-CDS@MICCAI.
[6] Sébastien Ourselin,et al. On the Compactness, Efficiency, and Representation of 3D Convolutional Networks: Brain Parcellation as a Pretext Task , 2017, IPMI.
[7] 拓海 杉山,et al. “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .
[8] Ninon Burgos,et al. Attenuation Correction Synthesis for Hybrid PET-MR Scanners: Application to Brain Studies , 2014, IEEE Transactions on Medical Imaging.
[9] Jelmer M. Wolterink,et al. Deep MR to CT Synthesis Using Unpaired Data , 2017, SASHIMI@MICCAI.
[10] Parashkev Nachev,et al. Computer Methods and Programs in Biomedicine NiftyNet: a deep-learning platform for medical imaging , 2022 .
[11] Xuenan Cui,et al. Deep CT to MR Synthesis Using Paired and Unpaired Data , 2018, Sensors.
[12] Maximilian Baust,et al. Learning in an Uncertain World: Representing Ambiguity Through Multiple Hypotheses , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).