Chaos in economics and finance

[1]  Dominique Guegan,et al.  Forecasting chaotic systems: The role of local Lyapunov exponents , 2007 .

[2]  R. Bhansali Long-memory time series: Theory and methods , 2007 .

[3]  Derek Abbott,et al.  Noise and Fluctuations in Econophysics and Finance , 2005 .

[4]  Dominique Guegan,et al.  De-noising with wavelets method in chaotic time series: application in climatology, energy, and finance (Invited Paper) , 2005, SPIE International Symposium on Fluctuations and Noise.

[5]  Dominique Guegan,et al.  Prediction in chaotic time series: methods and comparisons with an application to financial intra-day data , 2005 .

[6]  Dominique Guégan,et al.  How can we Define the Concept of Long Memory? An Econometric Survey , 2005 .

[7]  Dominique Guegan,et al.  DE-NOISING WITH WAVELETS METHOD IN CHAOTIC TIME SERIES: APPLICATION IN CLIMATOLOGY, ENERGY AND FINANCE , 2005 .

[8]  Dominique Guegan,et al.  Les chaos en finance: approche statistique , 2003 .

[9]  Mototsugu Shintani,et al.  Nonparametric Neutral Network Estimation of Lyapunov Exponents and a Direct Test for Chaos , 2002 .

[10]  D. Guégan,et al.  Extreme values of particular non-linear processes , 2002 .

[11]  Clive W. J. Granger,et al.  An introduction to long-memory time series models and fractional differencing , 2001 .

[12]  W. Brock,et al.  Heterogeneous beliefs and routes to chaos in a simple asset pricing model , 1998 .

[13]  H. L. Gray,et al.  A k‐Factor GARMA Long‐memory Model , 1998 .

[14]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[15]  C. Dunis,et al.  Nonlinear modelling of high frequency financial time series , 1998 .

[16]  D. Guégan,et al.  Determinating Lyapunov exponents in deterministic dynamical systems , 1997 .

[17]  William A. Barnett,et al.  Nonlinear Dynamics and Economics: Proceedings of the Tenth International Symposium in Economic Theory and Econometrics , 1996 .

[18]  H. Tong 13. Chaotic Dynamics: Theory and Applications to Economics , 1996 .

[19]  Floris Takens,et al.  Estimation of dimension and order of time series , 1996 .

[20]  D. Guégan,et al.  Nonparametric estimation of the chaotic function and the invariant measure of a dynamical system , 1995 .

[21]  茂 笹山 Paul De Grauwe, Hans Dewachter, and Mark Embrechts Exchange Rate Theory: Chaotic Models of Foreign Exchange Markets Blackwell, 1993 , 1995 .

[22]  D. Nychka,et al.  Local Lyapunov exponents: Predictability depends on where you are , 1995 .

[23]  Simon M. Potter,et al.  Nonlinear dynamics, chaos and econometrics , 1994 .

[24]  M. Embrechts,et al.  Exchange Rate Theory: Chaotic Models of Foreign Exchange Markets , 1993 .

[25]  R. Day Complex economic dynamics: Obvious in history, generic in theory, elusive in data , 1992 .

[26]  R. Gencay,et al.  An algorithm for the n Lyapunov exponents of an n -dimensional unknown dynamical system , 1992 .

[27]  Bryan T. Grenfell,et al.  Chance and Chaos in Measles Dynamics , 1992 .

[28]  Rodney C. Wolff,et al.  Local Lyapunov Exponents: Looking Closely at Chaos , 1992 .

[29]  Arun V. Holden,et al.  Mathematical approaches to brain functioning diagnostics , 1991 .

[30]  H. L. Gray,et al.  ON GENERALIZED FRACTIONAL PROCESSES , 1989 .

[31]  Jean-Michel Grandmont,et al.  Nonlinear Economic Dynamics , 1988 .

[32]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[33]  W M Schaffer,et al.  Can nonlinear dynamics elucidate mechanisms in ecology and epidemiology? , 1985, IMA journal of mathematics applied in medicine and biology.

[34]  P. Bergé,et al.  L'ordre dans le chaos. , 1984 .

[35]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[36]  F. Takens Detecting strange attractors in turbulence , 1981 .

[37]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[38]  F. Takens,et al.  On the nature of turbulence , 1971 .

[39]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[40]  Henri Poincaré,et al.  Science et méthode , 1934 .