Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles

See also Freyssinet J‐M, Toti F. Membrane microparticle determination: at least seeing what’s being sized! This issue, pp 311–4.

[1]  A. Kakkar,et al.  Cancer-associated thrombosis , 2010, British Journal of Cancer.

[2]  P. Fontana,et al.  Cell-derived microparticles in haemostasis and vascular medicine , 2009, Thrombosis and Haemostasis.

[3]  L. Arnaud,et al.  Standardization of platelet‐derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies? , 2009, Journal of thrombosis and haemostasis : JTH.

[4]  J. Freyssinet,et al.  Pathophysiologic significance of procoagulant microvesicles in cancer disease and progression , 2009, Hämostaseologie.

[5]  L. Horstman,et al.  Microparticle‐mediated thrombin generation assay: increased activity in patients with recurrent thrombosis , 2008, Journal of thrombosis and haemostasis : JTH.

[6]  J. Freyssinet,et al.  Elevated levels of circulating procoagulant microparticles in patients with β-thalassemia intermedia , 2008, Haematologica.

[7]  J. Zwicker Tissue factor-bearing microparticles and cancer. , 2008, Seminars in thrombosis and hemostasis.

[8]  A. Enjeti,et al.  Detection and Measurement of Microparticles: An Evolving Research Tool for Vascular Biology , 2007, Seminars in thrombosis and hemostasis.

[9]  Jean-Luc Pellequer,et al.  Past, present and future of atomic force microscopy in life sciences and medicine , 2007, Journal of molecular recognition : JMR.

[10]  S. Eichinger,et al.  Tissue factor-positive microparticles: Cellular origin and association with coagulation activation in patients with colorectal cancer , 2006, Thrombosis and Haemostasis.

[11]  R. Bertina,et al.  Microparticle‐associated tissue factor activity: a link between cancer and thrombosis? , 2007, Journal of thrombosis and haemostasis : JTH.

[12]  A. Minagar,et al.  Cell-derived microparticles and exosomes in neuroinflammatory disorders. , 2007, International review of neurobiology.

[13]  P. Comfurius,et al.  Surface exposure of phosphatidylserine in pathological cells , 2005, Cellular and Molecular Life Sciences CMLS.

[14]  J. Freyssinet,et al.  Membrane microparticles: two sides of the coin. , 2005, Physiology.

[15]  R. Nieuwland,et al.  Measuring circulating cell‐derived microparticles , 2004, Journal of thrombosis and haemostasis : JTH.

[16]  T. Oosterkamp,et al.  Covalent immobilization of single proteins on mica for molecular recognition force microscopy. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[17]  R. Nieuwland,et al.  Microparticles in cardiovascular diseases. , 2003, Cardiovascular research.

[18]  Laurence Zitvogel,et al.  Exosomes: composition, biogenesis and function , 2002, Nature Reviews Immunology.

[19]  I. Wang,et al.  Platelet-derived microparticles on synthetic surfaces observed by atomic force microscopy and fluorescence microscopy. , 1999, Biomaterials.

[20]  L. Horstman,et al.  Platelet microparticles: a wide-angle perspective. , 1999, Critical reviews in oncology/hematology.

[21]  J J Sixma,et al.  Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. , 1999, Blood.

[22]  A. Engel,et al.  Adsorption of biological molecules to a solid support for scanning probe microscopy. , 1997, Journal of structural biology.

[23]  M. Radmacher,et al.  From molecules to cells: imaging soft samples with the atomic force microscope. , 1992, Science.

[24]  BY MOLECULES , 2022 .