The minimum rank problem over the finite field of order 2 : Minimum rank 3

Our main result is a sharp bound for the number of vertices in a minimal forbidden subgraph for the graphs having minimum rank at most 3 over the finite field of order 2. We also list all 62 such minimal forbidden subgraphs. We conclude by exploring how some of these results over the finite field of order 2 extend to arbitrary fields and demonstrate that at least one third of the 62 are minimal forbidden subgraphs over an arbitrary field for the class of graphs having minimum rank at most 3 in that field.

[1]  On minimal rank over finite fields , 2006 .

[2]  Shaun M. Fallat,et al.  Computation of minimal rank and path cover number for certain graphs , 2004 .

[3]  A. Rényii,et al.  ON A PROBLEM OF GRAPH THEORY , 1966 .

[4]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[5]  W. G. Brown On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.

[6]  J. A. Rodríguez,et al.  Linear and Multilinear Algebra , 2007 .

[7]  Hein van der Holst,et al.  Graphs whose minimal rank is two : the finite fields case , 2005 .

[8]  Shaun M. Fallat,et al.  On the minimum rank of the join of graphs and decomposable graphs , 2007 .

[9]  Chris D. Godsil,et al.  Eigenvalue bounds for independent sets , 2008, J. Comb. Theory, Ser. B.

[10]  Hein van der Holst,et al.  Graphs whose positive semi-definite matrices have nullity at most two , 2003 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Bing Wei,et al.  On Ranks of Matrices Associated with Trees , 2003, Graphs Comb..

[13]  Irene Sciriha,et al.  Spectra of families of matrices described by graphs, digraphs, and sign patterns , 2006 .

[14]  Shaun M. Fallat,et al.  The minimum rank of symmetric matrices described by a graph: A survey☆ , 2007 .

[15]  公庄 庸三 Basic Algebra = 代数学入門 , 2002 .

[16]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[17]  Shaun M. Fallat,et al.  On the difference between the maximum multiplicity and path cover number for tree-like graphs , 2005 .

[18]  A. Albert Symmetric and alternate matrices in an arbitrary field. I , 1938 .

[19]  Miroslav Fiedler,et al.  A characterization of tridiagonal matrices , 1969 .

[20]  R. Loewy,et al.  The Inverse Inertia Problem for Graphs , 2007, 0711.3049.

[21]  Shaun M. Fallat,et al.  A variant on the graph parameters of Colin de Verdiere: Implications to the minimum rank of graphs , 2005 .

[22]  Jim Hefferon,et al.  Linear Algebra , 2012 .

[23]  A. Karimi,et al.  Master‟s thesis , 2011 .

[24]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[25]  António Leal Duarte,et al.  On Fiedler's characterization of tridiagonal matrices over arbitrary fields , 2005 .

[26]  Wieb Bosma,et al.  Computational Algebra and Number Theory , 1995 .

[27]  Yves Colin de Verdière,et al.  Multiplicities of Eigenvalues and Tree-Width of Graphs , 1998, J. Comb. Theory B.

[28]  B. McKay nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .

[29]  J. W. Jenkins,et al.  THE UNIVERSITY OF WISCONSIN. , 1905, Science.

[30]  P. Nylen,et al.  Minimum-rank matrices with prescribed graph , 1996 .

[31]  Sean V. Droms,et al.  Minimum rank of a tree over an arbitrary field , 2006 .

[32]  Charles R. Johnson,et al.  Estimation of the maximum multiplicity of an eigenvalue in terms of the vertex degrees of the graph of a matrix , 2002 .

[33]  R. Loewy,et al.  GRAPHS WHOSE MINIMAL RANK IS TWO , 2004 .

[34]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[35]  Charles R. Johnson,et al.  The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree , 1999 .

[36]  R. Lathe Phd by thesis , 1988, Nature.

[37]  From Boolean to sign pattern matrices , 2004 .

[38]  Frank J. Hall,et al.  Rational realizations of the minimum rank of a sign pattern matrix , 2005 .

[39]  T. Parsons Graphs from projective planes , 1975 .