Faster scaling of visual neurons in cortical areas relative to subcortical structures in non-human primate brains

[1]  Christopher L. Asplund,et al.  Faster Scaling of Auditory Neurons in Cortical Areas Relative to Subcortical Structures in Primate Brains , 2013, Brain, Behavior and Evolution.

[2]  Jon H. Kaas,et al.  Updated Neuronal Scaling Rules for the Brains of Glires (Rodents/Lagomorphs) , 2011, Brain, Behavior and Evolution.

[3]  Geraint Rees,et al.  Reciprocal Anatomical Relationship between Primary Sensory and Prefrontal Cortices in the Human Brain , 2011, The Journal of Neuroscience.

[4]  S. Herculano‐Houzel Brains matter, bodies maybe not: the case for examining neuron numbers irrespective of body size , 2011, Annals of the New York Academy of Sciences.

[5]  L. Krubitzer,et al.  Comparative studies of diurnal and nocturnal rodents: Differences in lifestyle result in alterations in cortical field size and number , 2010, The Journal of comparative neurology.

[6]  J. Kaas,et al.  Cellular Scaling Rules for the Brains of an Extended Number of Primate Species , 2010, Brain, Behavior and Evolution.

[7]  D. B. Leitch,et al.  Neuron densities vary across and within cortical areas in primates , 2010, Proceedings of the National Academy of Sciences.

[8]  A. Schleicher,et al.  Hominoid visual brain structure volumes and the position of the lunate sulcus. , 2010, Journal of human evolution.

[9]  V. Caviness,et al.  Neocortical neurogenesis: morphogenetic gradients and beyond , 2009, Trends in Neurosciences.

[10]  J. Kaas,et al.  The basic nonuniformity of the cerebral cortex , 2008, Proceedings of the National Academy of Sciences.

[11]  Luiz Carlos L Silveira,et al.  Number and topography of cones, rods and optic nerve axons in New and Old World primates , 2008, Visual Neuroscience.

[12]  R. Barton Evolutionary specialization in mammalian cortical structure , 2007, Journal of evolutionary biology.

[13]  J. Kaas,et al.  Cellular scaling rules for primate brains , 2007, Proceedings of the National Academy of Sciences.

[14]  P. Hof,et al.  Scaling of Inhibitory Interneurons in Areas V1 and V2 of Anthropoid Primates as Revealed by Calcium-Binding Protein Immunohistochemistry , 2006, Brain, Behavior and Evolution.

[15]  E. Kirk,et al.  Visual influences on primate encephalization. , 2006, Journal of human evolution.

[16]  J. Kremers The primate visual system : a comparative approach , 2006 .

[17]  V. Casagrande,et al.  Extraretinal Inputs and Feedback Mechanisms to the Lateral Geniculate Nucleus (LGN) , 2006 .

[18]  Roberto Lent,et al.  Isotropic Fractionator: A Simple, Rapid Method for the Quantification of Total Cell and Neuron Numbers in the Brain , 2005, The Journal of Neuroscience.

[19]  Peter M. Kaskan,et al.  Peripheral variability and central constancy in mammalian visual system evolution , 2005, Proceedings of the Royal Society B: Biological Sciences.

[20]  Christopher P Heesy,et al.  On the relationship between orbit orientation and binocular visual field overlap in mammals. , 2004, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[21]  Robert A. Barton,et al.  Binocularity and brain evolution in primates , 2004 .

[22]  E. Grove,et al.  Generating the cerebral cortical area map. , 2003, Annual review of neuroscience.

[23]  C. Stevens An evolutionary scaling law for the primate visual system and its basis in cortical function , 2001, Nature.

[24]  M. Sur,et al.  Visual behaviour mediated by retinal projections directed to the auditory pathway , 2000, Nature.

[25]  J. Kaas,et al.  Organizing principles of sensory representations. , 2000, Novartis Foundation symposium.

[26]  T. Insel,et al.  The primate neocortex in comparative perspective using magnetic resonance imaging. , 1999, Journal of human evolution.

[27]  R. Barton Visual specialization and brain evolution in primates , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[28]  J. Rubenstein,et al.  Regionalization of the prosencephalic neural plate. , 1998, Annual review of neuroscience.

[29]  A J King,et al.  Coding for auditory space in the nucleus of the brachium of the inferior colliculus in the ferret. , 1997, Journal of neurophysiology.

[30]  D. Purves,et al.  Correlated Size Variations in Human Visual Cortex, Lateral Geniculate Nucleus, and Optic Tract , 1997, The Journal of Neuroscience.

[31]  B. Finlay,et al.  Linked regularities in the development and evolution of mammalian brains. , 1995, Science.

[32]  Vivien A. Casagrande,et al.  The Afferent, Intrinsic, and Efferent Connections of Primary Visual Cortex in Primates , 1994 .

[33]  R. J. Mullen,et al.  NeuN, a neuronal specific nuclear protein in vertebrates. , 1992, Development.

[34]  A. Leventhal The neural basis of visual function , 1991 .

[35]  M. Sur,et al.  A map of visual space induced in primary auditory cortex. , 1990, Science.

[36]  B. Finlay,et al.  Control of cell number in the developing visual system. I. Effects of monocular enucleation. , 1986, Brain research.

[37]  H. Frahm,et al.  Comparison of brain structure volumes in insectivora and primates. V. Area striata (AS). , 1984, Journal fur Hirnforschung.

[38]  H. Frahm,et al.  Comparison of brain structure volumes in Insectivora and Primates. I. Neocortex. , 1982, Journal fur Hirnforschung.

[39]  H. Frahm,et al.  New and revised data on volumes of brain structures in insectivores and primates. , 1981, Folia primatologica; international journal of primatology.

[40]  T. Powell,et al.  The basic uniformity in structure of the neocortex. , 1980, Brain : a journal of neurology.

[41]  Peter T. Fox,et al.  Mosaic evolution of brain structure in mammals , 2022 .