Optimal aggregation of affine estimators
暂无分享,去创建一个
[1] Arkadi Nemirovski,et al. Topics in Non-Parametric Statistics , 2000 .
[2] Nello Cristianini,et al. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .
[3] Yoav Freund,et al. Boosting a weak learning algorithm by majority , 1995, COLT '90.
[4] Joseph Salmon,et al. NL-Means and aggregation procedures , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).
[5] Jean-Yves Audibert. Fast learning rates in statistical inference through aggregation , 2007, math/0703854.
[6] Christophe Giraud,et al. Mixing Least-Squares Estimators when the Variance is Unknown , 2007, 0711.0372.
[7] Andrew R. Barron,et al. Information Theory and Mixing Least-Squares Regressions , 2006, IEEE Transactions on Information Theory.
[8] E. George. Minimax Multiple Shrinkage Estimation , 1986 .
[9] Jean-Michel Morel,et al. A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..
[10] Arnak S. Dalalyan,et al. Aggregation by exponential weighting, sharp oracle inequalities and sparsity , 2008 .
[11] A. Tsybakov,et al. Oracle inequalities for inverse problems , 2002 .
[12] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[13] Tong Zhang,et al. Information-theoretic upper and lower bounds for statistical estimation , 2006, IEEE Transactions on Information Theory.
[14] Mario Bertero,et al. The Stability of Inverse Problems , 1980 .
[15] Yuhong Yang. Combining Different Procedures for Adaptive Regression , 2000, Journal of Multivariate Analysis.
[16] Mehra. System identification and time-series analysis , 1974 .
[17] Francis R. Bach,et al. Data-driven calibration of linear estimators with minimal penalties , 2009, NIPS.
[18] Sam Efromovich,et al. SHARP-OPTIMAL AND ADAPTIVE ESTIMATION FOR HETEROSCEDASTIC NONPARAMETRIC REGRESSION , 1996 .
[19] G. Lecu'e. Optimal rates of aggregation in classification under low noise assumption , 2006, math/0603447.
[20] Yali Amit,et al. Shape Quantization and Recognition with Randomized Trees , 1997, Neural Computation.
[21] L. Cavalier. Nonparametric statistical inverse problems , 2008 .
[22] P. Massart,et al. Risk bounds for model selection via penalization , 1999 .
[23] Arnak S. Dalalyan,et al. Sparse Regression Learning by Aggregation and Langevin Monte-Carlo , 2009, COLT.
[24] A. Tsybakov,et al. Linear and convex aggregation of density estimators , 2006, math/0605292.
[25] Yuhong Yang. REGRESSION WITH MULTIPLE CANDIDATE MODELS: SELECTING OR MIXING? , 1999 .
[26] Nello Cristianini,et al. Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..
[27] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[28] I. Johnstone,et al. Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .
[29] Sam Efromovich,et al. On nonparametric regression for IID observations in a general setting , 1996 .
[30] A. Tsybakov,et al. Aggregation for Gaussian regression , 2007, 0710.3654.
[31] Karim Lounici,et al. Pac-Bayesian Bounds for Sparse Regression Estimation with Exponential Weights , 2010, 1009.2707.
[32] Alexandre B. Tsybakov,et al. Optimal Rates of Aggregation , 2003, COLT.
[33] Arnak S. Dalalyan,et al. Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity , 2008, Machine Learning.
[34] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[35] Karim Lounici. Generalized mirror averaging and D-convex aggregation , 2007 .
[36] H. Akaike. A new look at the statistical model identification , 1974 .
[37] Yu. Golubev. On universal oracle inequalities related to high-dimensional linear models , 2010, 1011.2378.
[38] Yuhong Yang. Aggregating regression procedures to improve performance , 2004 .
[39] Leo Breiman,et al. Bagging Predictors , 1996, Machine Learning.
[40] Olivier Catoni,et al. Statistical learning theory and stochastic optimization , 2004 .
[41] A. Tsybakov,et al. Exponential Screening and optimal rates of sparse estimation , 2010, 1003.2654.
[42] A. Juditsky,et al. Nonparametric Denoising of Signals with Unknown Local Structure, I: Oracle Inequalities , 2008, 0809.0814.
[43] Arthur Cohen,et al. All Admissible Linear Estimates of the Mean Vector , 1966 .
[44] A. Dalalyan,et al. Sharp Oracle Inequalities for Aggregation of Affine Estimators , 2011, 1104.3969.
[45] M. Yuan,et al. Model selection and estimation in regression with grouped variables , 2006 .
[46] Francis R. Bach,et al. Consistency of the group Lasso and multiple kernel learning , 2007, J. Mach. Learn. Res..
[47] Arnak S. Dalalyan,et al. Aggregation by Exponential Weighting and Sharp Oracle Inequalities , 2007, COLT.
[48] A. Juditsky,et al. Functional aggregation for nonparametric regression , 2000 .
[49] Sylvie Huet,et al. Estimator selection in the Gaussian setting , 2010, 1007.2096.
[50] T. Cai. Adaptive wavelet estimation : A block thresholding and oracle inequality approach , 1999 .
[51] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[52] J. Coyle. Inverse Problems , 2004 .
[53] C. Stein. Estimation of the Mean of a Multivariate Normal Distribution , 1981 .