Symmetry classification of KdV-type nonlinear evolution equations

Group classification of a class of third-order nonlinear evolution equations generalizing KdV and mKdV equations is performed. It is shown that there are two equations admitting simple Lie algebras of dimension three. Next, we prove that there exist only four equations invariant with respect to Lie algebras having nontrivial Levi factors of dimension four and six. Our analysis shows that there are no equations invariant under algebras which are semi-direct sums of Levi factor and radical. Making use of these results we prove that there are three, nine, thirty-eight, fifty-two inequivalent KdV-type nonlinear evolution equations admitting one-, two-, three-, and four-dimensional solvable Lie algebras, respectively. Finally, we perform a complete group classification of the most general linear third-order evolution equation.

[1]  A. Mikhailov,et al.  Symmetries — Test of Integrability , 1993 .

[2]  D. Levi,et al.  Symmetries of discrete dynamical systems , 1996 .

[3]  R. T. Sharp,et al.  Invariants of real low dimension Lie algebras , 1976 .

[4]  F. Calogero The evolution partial differential equation ut=uxxx+3(uxxu2 +3u2xu)+3uxu4 , 1987 .

[5]  P. Turkowski Low‐dimensional real Lie algebras , 1988 .

[6]  G. Bluman,et al.  Symmetries and differential equations , 1989 .

[7]  Vladimir E. Zakharov,et al.  What Is Integrability , 1991 .

[8]  A. Barut,et al.  Theory of group representations and applications , 1977 .

[9]  Pavel Winternitz,et al.  Symmetry classes of variable coefficient nonlinear Schrodinger equations , 1993 .

[10]  L. Abellanas,et al.  Lie symmetries versus integrability in evolution equations , 1993 .

[11]  P. Basarab-Horwath,et al.  The Structure of Lie Algebras and the Classification Problem for Partial Differential Equations , 2000, math-ph/0005013.

[12]  V. Sokolov,et al.  The Symmetry Approach to Classification of Integrable Equations , 1991 .

[13]  S. Lafortune,et al.  Symmetry Classification of Diatomic Molecular Chains , 2001, nlin/0204021.

[14]  Generalized Kadomtsev–Petviashvili equation with an infinite-dimensional symmetry algebra , 2001, nlin/0109009.

[15]  P. Winternitz,et al.  On the integrability properties of variable coefficient Korteweg-de Vries equations , 1996 .

[16]  R. Z. Zhdanov,et al.  Group classification of heat conductivity equations with a nonlinear source , 1999 .

[17]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[18]  Athanassios S. Fokas,et al.  A symmetry approach to exactly solvable evolution equations , 1980 .

[19]  Athanassios S. Fokas,et al.  Important developments in soliton theory , 1993 .

[20]  R. Zhdanov,et al.  On preliminary symmetry classification of nonlinear Schrödinger equations with some applications to Doebner-Goldin models , 2000 .

[21]  R. Zhdanov,et al.  New scale-invariant nonlinear differential equations for a complex scalar field , 1996 .

[22]  S. Lafortune,et al.  Symmetries of discrete dynamical systems involving two species , 1998, solv-int/9812019.

[23]  W. Miller,et al.  Group analysis of differential equations , 1982 .

[24]  M. Euler,et al.  Recursion Operators for a Class of Integrable Third‐Order Evolution Equations , 2003, nlin/0304012.

[25]  Jean-Pierre Gazeau,et al.  Symmetries of variable coefficient Korteweg–de Vries equations , 1992 .