Symmetry classification of KdV-type nonlinear evolution equations
暂无分享,去创建一个
F. Gungor | R. Zhdanov | V. Lahno | R. Z. Zhdanov | V. I. Lahno | F. Gungor
[1] A. Mikhailov,et al. Symmetries — Test of Integrability , 1993 .
[2] D. Levi,et al. Symmetries of discrete dynamical systems , 1996 .
[3] R. T. Sharp,et al. Invariants of real low dimension Lie algebras , 1976 .
[4] F. Calogero. The evolution partial differential equation ut=uxxx+3(uxxu2 +3u2xu)+3uxu4 , 1987 .
[5] P. Turkowski. Low‐dimensional real Lie algebras , 1988 .
[6] G. Bluman,et al. Symmetries and differential equations , 1989 .
[7] Vladimir E. Zakharov,et al. What Is Integrability , 1991 .
[8] A. Barut,et al. Theory of group representations and applications , 1977 .
[9] Pavel Winternitz,et al. Symmetry classes of variable coefficient nonlinear Schrodinger equations , 1993 .
[10] L. Abellanas,et al. Lie symmetries versus integrability in evolution equations , 1993 .
[11] P. Basarab-Horwath,et al. The Structure of Lie Algebras and the Classification Problem for Partial Differential Equations , 2000, math-ph/0005013.
[12] V. Sokolov,et al. The Symmetry Approach to Classification of Integrable Equations , 1991 .
[13] S. Lafortune,et al. Symmetry Classification of Diatomic Molecular Chains , 2001, nlin/0204021.
[14] Generalized Kadomtsev–Petviashvili equation with an infinite-dimensional symmetry algebra , 2001, nlin/0109009.
[15] P. Winternitz,et al. On the integrability properties of variable coefficient Korteweg-de Vries equations , 1996 .
[16] R. Z. Zhdanov,et al. Group classification of heat conductivity equations with a nonlinear source , 1999 .
[17] P. Olver. Applications of Lie Groups to Differential Equations , 1986 .
[18] Athanassios S. Fokas,et al. A symmetry approach to exactly solvable evolution equations , 1980 .
[19] Athanassios S. Fokas,et al. Important developments in soliton theory , 1993 .
[20] R. Zhdanov,et al. On preliminary symmetry classification of nonlinear Schrödinger equations with some applications to Doebner-Goldin models , 2000 .
[21] R. Zhdanov,et al. New scale-invariant nonlinear differential equations for a complex scalar field , 1996 .
[22] S. Lafortune,et al. Symmetries of discrete dynamical systems involving two species , 1998, solv-int/9812019.
[23] W. Miller,et al. Group analysis of differential equations , 1982 .
[24] M. Euler,et al. Recursion Operators for a Class of Integrable Third‐Order Evolution Equations , 2003, nlin/0304012.
[25] Jean-Pierre Gazeau,et al. Symmetries of variable coefficient Korteweg–de Vries equations , 1992 .