Climate change and marine molluscs of the western North Atlantic: future prospects and perils

Numerous studies have examined potential responses of terrestrial biotas to future climate change, but fewer have considered marine realms. We forecast how marine molluscan faunas might respond to environmental change over the remainder of this century. We test the hypotheses that suitable areas will shift northwards for studied species, and that species will show varied responses to future climate change.

[1]  Colin W. Rundel,et al.  Interface to Geometry Engine - Open Source (GEOS) , 2015 .

[2]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[3]  Damien A. Fordham,et al.  Population dynamics can be more important than physiological limits for determining range shifts under climate change , 2013, Global change biology.

[4]  P. Marquet,et al.  Heat freezes niche evolution. , 2013, Ecology letters.

[5]  A. Peterson,et al.  Plumbing the depths: extending ecological niche modelling and species distribution modelling in three dimensions , 2013 .

[6]  Alex S. Kutt,et al.  Focus on poleward shifts in species' distribution underestimates the fingerprint of climate change , 2013 .

[7]  David Mouillot,et al.  Projected climate change and the changing biogeography of coastal Mediterranean fishes , 2013 .

[8]  J. Andrew Royle,et al.  Presence‐only modelling using MAXENT: when can we trust the inferences? , 2013 .

[9]  W. Cheung,et al.  Predicting the Impact of Climate Change on Threatened Species in UK Waters , 2013, PloS one.

[10]  Damien A. Fordham,et al.  Predicting the Distribution of Commercially Important Invertebrate Stocks under Future Climate , 2012, PloS one.

[11]  A. Townsend Peterson,et al.  Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas , 2012 .

[12]  Nicholas K. Dulvy,et al.  Thermal tolerance and the global redistribution of animals , 2012 .

[13]  W. Jetz,et al.  Broad-scale ecological implications of ectothermy and endothermy in changing environments , 2012 .

[14]  D. Tittensor,et al.  Global habitat suitability of cold‐water octocorals , 2012 .

[15]  Damaris Zurell,et al.  Predicting to new environments: tools for visualizing model behaviour and impacts on mapped distributions , 2012 .

[16]  J. Andrew Royle,et al.  Likelihood analysis of species occurrence probability from presence‐only data for modelling species distributions , 2012, Methods in Ecology and Evolution.

[17]  Kimberly S. Sheldon,et al.  On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change , 2012, Proceedings of the Royal Society B: Biological Sciences.

[18]  Brendan A. Wintle,et al.  Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming? , 2012 .

[19]  Charles Troupin,et al.  Bio‐ORACLE: a global environmental dataset for marine species distribution modelling , 2012 .

[20]  Damien A. Fordham,et al.  Strengthening forecasts of climate change impacts with multi‐model ensemble averaged projections using MAGICC/SCENGEN 5.3 , 2012 .

[21]  Damien A. Fordham,et al.  Geographic range determinants of two commercially important marine molluscs , 2012 .

[22]  H. Reiss,et al.  Species distribution modelling of marine benthos: a North Sea case study , 2011 .

[23]  C. Jones,et al.  Development and evaluation of an Earth-System model - HadGEM2 , 2011 .

[24]  C. Harley Climate Change, Keystone Predation, and Biodiversity Loss , 2011, Science.

[25]  Robert P. Anderson,et al.  Ecological Niches and Geographic Distributions , 2011 .

[26]  Franklin B. Schwing,et al.  The Pace of Shifting Climate in Marine and Terrestrial Ecosystems , 2011, Science.

[27]  Jane Elith,et al.  Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities , 2011 .

[28]  Piero Visconti,et al.  Future hotspots of terrestrial mammal loss , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[29]  M. Araújo,et al.  Choice of threshold alters projections of species range shifts under climate change , 2011 .

[30]  C. Jones,et al.  The HadGEM2 family of Met Office Unified Model climate configurations , 2011 .

[31]  R. Ohlemüller,et al.  Rapid Range Shifts of Species Associated with High Levels of Climate Warming , 2011, Science.

[32]  J. Lamarque,et al.  The HadGEM2-ES implementation of CMIP5 centennial simulations , 2011 .

[33]  O. De Clerck,et al.  Modelling the distribution and ecology of Trichosolen blooms on coral reefs worldwide , 2011 .

[34]  A. Peterson,et al.  The crucial role of the accessible area in ecological niche modeling and species distribution modeling , 2011 .

[35]  A. Peterson Ecological niche conservatism: a time‐structured review of evidence , 2011 .

[36]  J. Lobo,et al.  How well does presence‐only‐based species distribution modelling predict assemblage diversity? A case study of the Tenerife flora , 2011 .

[37]  Trevor Hastie,et al.  A statistical explanation of MaxEnt for ecologists , 2011 .

[38]  E. Lécuyer,et al.  Modelled spatial distribution of marine fish and projected modifications in the North Atlantic Ocean , 2011 .

[39]  Dennis Rödder,et al.  Applications and future challenges in marine species distribution modeling , 2011 .

[40]  C. Jones,et al.  Interactive comment on “ Development and evaluation of an Earth-system model – HadGEM 2 ” , 2011 .

[41]  H. D. Cooper,et al.  Scenarios for Global Biodiversity in the 21st Century , 2010, Science.

[42]  D. Wethey,et al.  Rising environmental temperatures and biogeography: poleward range contraction of the blue mussel, Mytilus edulis L., in the western Atlantic , 2010 .

[43]  Noe C. Barrera,et al.  Encyclopedia of Texas Seashells: Identification, Ecology, Distribution, and History , 2010 .

[44]  Susan L. Williams,et al.  Marine range shifts and species introductions: comparative spread rates and community impacts , 2010 .

[45]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[46]  Grégory Beaugrand,et al.  On the processes linking climate to ecosystem changes , 2010 .

[47]  C. Gobler,et al.  The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern oysters (Crassostrea virginica) , 2009 .

[48]  J. Sarmiento,et al.  Projecting global marine biodiversity impacts under climate change scenarios , 2009 .

[49]  D. Wethey,et al.  Linking Thermal Tolerances and Biogeography: Mytilus edulis (L.) at its Southern Limit on the East Coast of the United States , 2009, The Biological Bulletin.

[50]  C. Graham,et al.  Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know? , 2009 .

[51]  A. Tomašových,et al.  Preservation of spatial and environmental gradients by death assemblages , 2009, Paleobiology.

[52]  C. Amante,et al.  ETOPO1 arc-minute global relief model : procedures, data sources and analysis , 2009 .

[53]  Damien A. Fordham,et al.  Dynamics of range margins for metapopulations under climate change , 2009, Proceedings of the Royal Society B: Biological Sciences.

[54]  Steven J. Phillips,et al.  Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. , 2009, Ecological applications : a publication of the Ecological Society of America.

[55]  Mike Ashworth,et al.  Modelling the global coastal ocean , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[56]  A. Peterson,et al.  Shifting Global Invasive Potential of European Plants with Climate Change , 2008, PloS one.

[57]  R. Huey,et al.  Putting the Heat on Tropical Animals , 2008, Science.

[58]  A. Richardson,et al.  Under-Resourced, Under Threat , 2008, Science.

[59]  A. Townsend Peterson,et al.  Rethinking receiver operating characteristic analysis applications in ecological niche modeling , 2008 .

[60]  Antoine Guisan,et al.  Niche dynamics in space and time. , 2008, Trends in ecology & evolution.

[61]  Jeffery R. Scott,et al.  Tropical Cyclone–Induced Upper-Ocean Mixing and Climate: Application to Equable Climates , 2008 .

[62]  T. Piersma,et al.  Thermal tolerance ranges and climate variability: A comparison between bivalves from differing climates , 2007 .

[63]  N. Queiroz,et al.  Modelling past and present geographical distribution of the marine gastropod Patella rustica as a tool for exploring responses to environmental change , 2007 .

[64]  L. Gerber,et al.  Connecting places: The ecological consequences of dispersal in the sea , 2007 .

[65]  A. Townsend Peterson,et al.  The influence of spatial errors in species occurrence data used in distribution models , 2007 .

[66]  Rainer Knust,et al.  Climate Change Affects Marine Fishes Through the Oxygen Limitation of Thermal Tolerance , 2007, Science.

[67]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[68]  Stefano Schiavon,et al.  Climate Change 2007: The Physical Science Basis. , 2007 .

[69]  E. Barbier,et al.  Impacts of Biodiversity Loss on Ocean Ecosystem Services , 2006, Science.

[70]  R. Guralnick,et al.  BioGeomancer: Automated Georeferencing to Map the World's Biodiversity Data , 2006, PLoS biology.

[71]  M. Araújo,et al.  Five (or so) challenges for species distribution modelling , 2006 .

[72]  Christopher D G Harley,et al.  The impacts of climate change in coastal marine systems. , 2006, Ecology letters.

[73]  M. Sykes,et al.  Climate change threats to plant diversity in Europe. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[74]  T. Dawson,et al.  Selecting thresholds of occurrence in the prediction of species distributions , 2005 .

[75]  Qinghua Guo,et al.  The point-radius method for georeferencing locality descriptions and calculating associated uncertainty , 2004, Int. J. Geogr. Inf. Sci..

[76]  M. Edwards,et al.  Impact of climate change on marine pelagic phenology and trophic mismatch , 2004, Nature.

[77]  O. Phillips,et al.  Extinction risk from climate change , 2004, Nature.

[78]  Clive Fox,et al.  North Sea cod and climate change – modelling the effects of temperature on population dynamics , 2003 .

[79]  Z. Khalil,et al.  Drugs from the sea: conotoxins as drug leads for neuropathic pain and other neurological conditions. , 2003, Mini reviews in medicinal chemistry.

[80]  J. G. Hiddink,et al.  Modelling the adaptive value of intertidal migration and nursery use in the bivalve Macoma balthica , 2003 .

[81]  Robert P. Anderson,et al.  Evaluating predictive models of species’ distributions: criteria for selecting optimal models , 2003 .

[82]  G. Somero Thermal Physiology and Vertical Zonation of Intertidal Animals: Optima, Limits, and Costs of Living1 , 2002, Integrative and comparative biology.

[83]  M. Noble Current Patterns Over the Continental Shelf and Slope , 2001 .

[84]  J. W. Hendley,et al.  Beyond the Golden Gate: Oceanography, geology, biology, and environmental issues in the Gulf of the Farallones , 2001 .

[85]  David R. B. Stockwell,et al.  The GARP modelling system: problems and solutions to automated spatial prediction , 1999, Int. J. Geogr. Inf. Sci..

[86]  J. Lawton,et al.  Making mistakes when predicting shifts in species range in response to global warming , 1998, Nature.

[87]  S. Pickett,et al.  Insights from paleoecology to community ecology. , 1990, Trends in ecology & evolution.

[88]  R. Sibson,et al.  A brief description of natural neighbor interpolation , 1981 .