Recursive identification algorithms for right matrix fraction description models

Multivariable identification algorithms are usually designed only for left matrix fraction description (LMFD) models. In this paper we consider recursive identification algorithms for right matrix fraction description (RMFD) models with diagonal denominator matrices. The algorithms are of prediction error (PE) and model reference (MR) type. Convergence analysis results give a positive realness condition for the convergence of the MR algorithm to the true RMFD of the system. The PE scheme converges to a local minimum of the criterion with probability 1. Results from simulations illustrate the convergence of the algorithms.

[1]  Y. D. Landau,et al.  Adaptive control: The model reference approach , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  M. Morf,et al.  Estimation of time differences of arrival by pole decomposition , 1983 .

[3]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[4]  Arye Nehorai,et al.  Algorithms for system identification and source location , 1983 .

[5]  Petre Stoica,et al.  Identification of Multivariable Systems Using Instrumental Variable Methods , 1982 .

[6]  J. R. Blair,et al.  Estimation of coefficients for multiple input system models without employing common denominator structure , 1981 .

[7]  Petre Stoica,et al.  Comparison of some instrumental variable methods - Consistency and accuracy aspects , 1981, Autom..

[8]  Lennart Ljung,et al.  Analysis of a general recursive prediction error identification algorithm , 1981, Autom..

[9]  Anthony J. Jakeman,et al.  Instrumental Variable Algorithms for Multiple Input Systems Described by Multiple Transfer Functions , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  Thomas Kailath,et al.  Linear Systems , 1980 .

[11]  N. Sinha,et al.  Online identification of linear discrete-time multivariable systems , 1979 .

[12]  N. Sinha,et al.  Choice of models for the identification of linear multivariable discrete-time systems , 1979 .

[13]  L. Ljung Convergence of Recursive Estimators , 1979 .

[14]  P. Young,et al.  Refined instrumental variable methods of recursive time-series analysis Part II. Multivariable systems , 1979 .

[15]  V. Solo Time series recursions and stochastic approximation , 1979, Bulletin of the Australian Mathematical Society.

[16]  I. Landau,et al.  Elimination of the real positivity condition in the design of parallel MRAS , 1978 .

[17]  Ioan Doré Landau,et al.  On the recursive identification of multi-input, multi-output systems , 1978, Autom..

[18]  L. Ljung Convergence of an Adaptive Filter Algorithm , 1978 .

[19]  R. Kashyap,et al.  Dynamic Stochastic Models from Empirical Data. , 1977 .

[20]  P. Caines,et al.  On the use of shift register sequences as instrumental variables for the recursive identification of multivariable linear systems , 1977 .

[21]  Lennart Ljung,et al.  Analysis of recursive stochastic algorithms , 1977 .

[22]  Lennart Ljung,et al.  On positive real transfer functions and the convergence of some recursive schemes , 1977 .

[23]  P. Young Some observations on instrumental variable methods of time-series analysis , 1976 .

[24]  I. Landau Unbiased recursive identification using model reference adaptive techniques , 1976 .

[25]  R. Guidorzi Canonical structures in the identification of multivariable systems , 1975, Autom..

[26]  R. Kashyap,et al.  Parameter estimation in multivariate stochastic difference equations , 1974 .

[27]  I. D. Landau,et al.  A survey of model reference adaptive techniques - Theory and applications , 1973, Autom..

[28]  E. Frid On Optimal Strategies in Control Problems with Constraints , 1972 .

[29]  P. Young An instrumental variable method for real-time identification of a noisy process , 1970 .

[30]  Rowe,et al.  A bootstrap method for the statistical estimation of model parameters , 1970 .

[31]  Michael Fara,et al.  Identification of Linear Discrete Time Systems Using the Instrumental Variable Method , 1967 .

[32]  H. Kushner On the stochastic maximum principle with “average” constraints☆ , 1965 .