CO, Water, and Tentative Methanol in η Carinae Approaching Periastron

The complex circumstellar environment around the massive binary and luminous blue variable η Carinae is known to harbor numerous light molecules, emitting most strongly in rotational states with upper level energies to ∼300 K. In circumstellar gas, the complex organic molecule methanol (CH3OH) has been found almost exclusively around young stellar objects, and thus regarded as a signpost of recent star formation. Here we report the first potential detection of methanol around a highly evolved high-mass star, while using the Atacama Large Millimeter Array to investigate molecular cloud conditions traced by CO (2–1) in an orbit phase preceding the 2020 periastron. The methanol emission originates from hot (Tgas ≃ 700 K) material, ∼2″ (0.02 pc) across, centered on the dust-obscured binary, and is accompanied by prominent absorption of continuum radiation in a cooler (Tgas ≃ 110 K) layer of gas. We also report a first detection of water in Herschel observations at 557 and 988 GHz. The methanol abundance is several to 50 times higher than observed toward several lower-mass stars, while water abundances are similar to those observed in cool, dense molecular clouds. The very high methanol:water abundance ratio in the core of η Car may suggest methanol formation processes similar to Fischer–Tropsch-type catalytic reactions on dust grains. These observations prove that complex molecule formation can occur in a chemically evolved massive stellar environment, given sufficient gas densities and shielding conditions as may occur in material around massive interacting companions and merger remnants.

[1]  J. Rizzo,et al.  The peculiar chemistry of the inner ejecta of Eta Carina , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  G. Weigelt,et al.  Mid-infrared evolution of η Carinae from 1968 to 2018 , 2019, Astronomy & Astrophysics.

[3]  I. Arcavi,et al.  The diverse lives of progenitors of hydrogen-rich core-collapse supernovae: the role of binary interaction , 2019, Astronomy & Astrophysics.

[4]  H. Olofsson,et al.  HD 101584: circumstellar characteristics and evolutionary status , 2019, Astronomy & Astrophysics.

[5]  G. Weigelt,et al.  Distinguishing circumstellar from stellar photometric variability in Eta Carinae , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  J. Cernicharo,et al.  Through the magnifying glass: ALMA acute viewing of the intricate nebular architecture of OH231.8+4.2. , 2018, Astronomy and astrophysics.

[7]  J. Prieto,et al.  Light echoes from the plateau in Eta Carinae’s Great Eruption reveal a two-stage shock-powered event , 2018, Monthly Notices of the Royal Astronomical Society.

[8]  K. Hamaguchi,et al.  Non-thermal X-rays from colliding wind shock acceleration in the massive binary Eta Carinae , 2018, Nature Astronomy.

[9]  A. Ginsburg,et al.  A disrupted molecular torus around Eta Carinae as seen in 12CO with ALMA , 2017, 1712.01362.

[10]  K. Davidson,et al.  Concerning the Orbit of η Car , 2017 .

[11]  L. Xiao,et al.  The Lives and Death-Throes of Massive Stars , 2017 .

[12]  M. Lindqvist,et al.  First detection of methanol towards a post-AGB object, HD 101584 , 2017, 1706.08254.

[13]  M. Barlow,et al.  η Carinae's Dusty Homunculus Nebula from Near-infrared to Submillimeter Wavelengths: Mass, Composition, and Evidence for Fading Opacity , 2017, The Astrophysical journal.

[14]  D. Morris,et al.  The 2014 X-Ray Minimum of η Carinae as Seen by Swift , 2017 .

[15]  G. Weigelt,et al.  The fossil wind structures of Eta Carinae: changes across one 5.54-yr cycle , 2016, 1608.06193.

[16]  J. Cernicharo,et al.  A λ 3 mm and 1 mm line survey toward the yellow hypergiant IRC +10420: N-rich chemistry and IR flux variations. , 2016, Astronomy and astrophysics.

[17]  M. Moe,et al.  Mind Your Ps and Qs: The Interrelation between Period (P) and Mass-ratio (Q) Distributions of Binary Stars , 2016, 1606.05347.

[18]  K. Menten,et al.  SPATIAL DISTRIBUTION AND KINEMATICS OF THE MOLECULAR MATERIAL ASSOCIATED WITH ETA CARINAE , 2016, 1606.04575.

[19]  J. Nuth,et al.  Gas/solid carbon branching ratios in surface‐mediated reactions and the incorporation of carbonaceous material into planetesimals , 2016, Meteoritics & planetary science.

[20]  J. Cernicharo,et al.  A lambda 3mm and 1mm line survey toward the yellow hypergiant IRC +10420 , 2016, 1605.09183.

[21]  M. Gray,et al.  Towards detecting methanol emission in low-mass protoplanetary discs with ALMA: the role of non-LTE excitation , 2016, 1605.03729.

[22]  Western Michigan University,et al.  He II λ4686 EMISSION FROM THE MASSIVE BINARY SYSTEM IN η CAR: CONSTRAINTS TO THE ORBITAL ELEMENTS AND THE NATURE OF THE PERIODIC MINIMA , 2016, The Astrophysical Journal.

[23]  S. Zwart,et al.  Was the nineteenth century giant eruption of Eta Carinae a merger event in a triple system , 2015, 1511.06889.

[24]  Adwin Boogert,et al.  Observations of the Icy Universe , 2015, 1501.05317.

[25]  P. Podsiadlowski,et al.  LUMINOUS BLUE VARIABLES AND SUPERLUMINOUS SUPERNOVAE FROM BINARY MERGERS , 2014, 1410.2426.

[26]  A. Mehner,et al.  The Three-dimensional Structure of the Eta Carinae Homunculus , 2014, 1407.4096.

[27]  D. Falceta-Gonçalves,et al.  η CARINAE BABY HOMUNCULUS UNCOVERED BY ALMA , 2014, 1406.6297.

[28]  E. Bergin,et al.  HERSCHEL OBSERVATIONS OF EXTRAORDINARY SOURCES: ANALYSIS OF THE FULL HERSCHEL/HIFI MOLECULAR LINE SURVEY OF SAGITTARIUS B2(N) , 2014, 1405.0706.

[29]  S. D. Mink,et al.  THE INCIDENCE OF STELLAR MERGERS AND MASS GAINERS AMONG MASSIVE STARS , 2013, 1312.3650.

[30]  E. Bergin,et al.  Ortho-to-para ratio in interstellar water on the sightline toward Sagittarius B2(N). , 2013, The journal of physical chemistry. A.

[31]  S. Owocki,et al.  Constraints on decreases in η Carinae's mass-loss from 3D hydrodynamic simulations of its binary colliding winds , 2013, 1310.0487.

[32]  O. Pols,et al.  Structure and evolution of high-mass stellar mergers , 2013, 1307.2445.

[33]  Inverted Ionization Zones in Eta Carinae's "Weigelt Knots" , 2013, 1302.2659.

[34]  A. Bolatto,et al.  The CO-to-H2 Conversion Factor , 2013, 1301.3498.

[35]  D. Lis,et al.  THE ABUNDANCE, ORTHO/PARA RATIO, AND DEUTERATION OF WATER IN THE HIGH-MASS STAR-FORMING REGION NGC 6334 I , 2012, 1212.5169.

[36]  Baltimore,et al.  WATER ABSORPTION IN GALACTIC TRANSLUCENT CLOUDS: CONDITIONS AND HISTORY OF THE GAS DERIVED FROM HERSCHEL/HIFI PRISMAS OBSERVATIONS , 2012, 1211.0367.

[37]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[38]  D. Sasselov,et al.  Using MOST to reveal the secrets of the mischievous Wolf—Rayet binary CV Ser , 2012, 1207.6032.

[39]  H Germany,et al.  On the influence of the companion star in Eta Carinae: 2D radiative transfer modeling of the ultraviolet and optical spectra , 2012, 1204.1963.

[40]  S. Bontemps,et al.  The massive protostar W43-MM1 as seen by Herschel-HIFI water spectra : High turbulence and accretion luminosity , 2012, 1204.0397.

[41]  S. Johansson,et al.  η Carinae: linelist for the emission spectrum of the Weigelt blobs in the 1700 to 10 400 Å wavelength region , 2012 .

[42]  K. Menten,et al.  MOLECULES IN η CARINAE , 2012, 1203.1559.

[43]  J. Groh,et al.  A LIGHTHOUSE EFFECT IN ETA CARINAE , 2012, 1201.1848.

[44]  Michael Olberg,et al.  In-orbit performance of Herschel-HIFI , 2012 .

[45]  S. Owocki,et al.  Constraining the absolute orientation of η Carinae’s binary orbit: a 3D dynamical model for the broad [Fe iii] emission , 2011, 1111.2226.

[46]  J. Black,et al.  Observational tests of interstellar methanol formation , 2011 .

[47]  A. Vilesov,et al.  Fast nuclear spin conversion in water clusters and ices: a matrix isolation study. , 2011, The journal of physical chemistry. A.

[48]  N. Smith,et al.  A revised historical light curve of Eta Carinae and the timing of close periastron encounters , 2010, 1010.3719.

[49]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[50]  D. Flower,et al.  The rotational structure of methanol and its excitation by helium , 2010 .

[51]  C. Brinch,et al.  Methanol maps of low-mass protostellar systems - I. The Serpens molecular core , 2010, 1004.2217.

[52]  R. Humphreys,et al.  HIGH-EXCITATION EMISSION LINES NEAR ETA CARINAE, AND ITS LIKELY COMPANION STAR , 2009, 0912.1067.

[53]  A. F. J. Moffat,et al.  UNDERSTANDING THE X-RAY FLARING FROM η CARINAE , 2009, 0910.2395.

[54]  E. Dishoeck,et al.  Hydrogenation reactions in interstellar CO ice analogues A combined experimental/theoretical approach , 2009 .

[55]  E. Herbst,et al.  Complex Organic Interstellar Molecules , 2009 .

[56]  N. Johnson,et al.  A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae , 2008, Proceedings of the International Astronomical Union.

[57]  Landessternwarte,et al.  A multispectral view of the periodic events in η Carinae , 2007, 0711.4297.

[58]  R. S. Levenhagen,et al.  The periodicity of the η Carinae events , 2007, 0711.4250.

[59]  J. Black,et al.  A computer program for fast non-LTE analysis of interstellar line spectra With diagnostic plots to interpret observed line intensity ratios , 2007, 0704.0155.

[60]  A. M. Sobolev,et al.  Methanol and other molecular tracers of outflows and dense gas in the molecular cloud G345.01+1.79 , 2006 .

[61]  R. Garrod,et al.  Are gas-phase models of interstellar chemistry tenable? The case of methanol. , 2006, Faraday discussions.

[62]  T. Millar,et al.  Dissociative recombination of protonated methanol. , 2006, Faraday discussions.

[63]  M. Barlow,et al.  The Water Vapor Abundance in Orion KL Outflows , 2006, astro-ph/0608336.

[64]  N. Smith,et al.  The Structure of the Homunculus. I. Shape and Latitude Dependence from H2 and [Fe II] Velocity Maps of η Carinae , 2006, astro-ph/0602464.

[65]  K. Stanek,et al.  The Fate of the Most Massive Stars , 2005 .

[66]  Stephen L. Davis,et al.  The rotational excitation of methanol by para‐hydrogen , 2004 .

[67]  N. Smith The systemic velocity of Eta Carinae , 2004, astro-ph/0406523.

[68]  E. Bergin,et al.  Modeling gas-phase H2O between 5 μm and 540 μm toward massive protostars , 2003 .

[69]  E. Bergin,et al.  Sensitive Limits on the Water Abundance in Cold Low-Mass Molecular Cores , 2002, astro-ph/0211505.

[70]  A. Kouchi,et al.  Efficient Formation of Formaldehyde and Methanol by the Addition of Hydrogen Atoms to CO in H2O-CO Ice at 10 K , 2002 .

[71]  UK,et al.  In hot pursuit of the hidden companion of η Carinae: an X-ray determination of the wind parameters , 2002, astro-ph/0201105.

[72]  D. Ebbets,et al.  Hubble Space Telescope Proper-Motion Measurements of the η Carinae Nebula , 2001 .

[73]  M. Harwit,et al.  Water Abundance in Molecular Cloud Cores , 2000, astro-ph/0010393.

[74]  P. Cox,et al.  Discovery of a massive equatorial torus in the η Carinae stellar system , 1999, Nature.

[75]  E. Polomski,et al.  Complex Structure of η Carinae in the Mid-Infrared , 1999 .

[76]  K. Brooks,et al.  An Investigation of the Molecular Clouds of the Carina HII Region/Molecular Cloud Complex—First Results , 1998, Publications of the Astronomical Society of Australia.

[77]  Kris Davidson,et al.  Eta carinae and its environment , 1997 .

[78]  Klaus Christmann,et al.  Introduction to surface physical chemistry , 1991 .

[79]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.