Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria

The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications.

[1]  S. Lebeer,et al.  The Sweet Tooth of Bacteria: Common Themes in Bacterial Glycoconjugates , 2014, Microbiology and Molecular Reviews.

[2]  B. Imperiali,et al.  At the membrane frontier: a prospectus on the remarkable evolutionary conservation of polyprenols and polyprenyl-phosphates. , 2011, Archives of biochemistry and biophysics.

[3]  A. Beaussart,et al.  Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae. , 2014, Nanoscale.

[4]  Guillaume Andre,et al.  Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells , 2010, Nature communications.

[5]  R. Lancefield THE ANTIGENIC COMPLEX OF STREPTOCOCCUS HAEMOLYTICUS : I. DEMONSTRATION OF A TYPE-SPECIFIC SUBSTANCE IN EXTRACTS OF STREPTOCOCCUS HAEMOLYTICUS. , 1927, The Journal of experimental medicine.

[6]  Kayo Okumura,et al.  Complete genome sequencing and analysis of a Lancefield group G Streptococcus dysgalactiae subsp. equisimilis strain causing streptococcal toxic shock syndrome (STSS) , 2011, BMC Genomics.

[7]  J. Coligan,et al.  High-resolution 1H- and 13C-n.m.r. spectra of the group A-variant streptococcal polysaccharide. , 1982, Carbohydrate research.

[8]  A. Peschel,et al.  Pathways and roles of wall teichoic acid glycosylation in Staphylococcus aureus. , 2014, International journal of medical microbiology : IJMM.

[9]  N. Rama Krishna,et al.  Characterization of the group A streptococcal polysaccharide by two-dimensional 1H-nuclear-magnetic-resonance spectroscopy. , 1986, Carbohydrate research.

[10]  Keith A. Jolley,et al.  Genomic Evidence for the Evolution of Streptococcus equi: Host Restriction, Increased Virulence, and Genetic Exchange with Human Pathogens , 2009, PLoS pathogens.

[11]  D. Bessen,et al.  Population Genetics of Streptococcus dysgalactiae Subspecies equisimilis Reveals Widely Dispersed Clones and Extensive Recombination , 2010, PloS one.

[12]  R. Lancefield A SEROLOGICAL DIFFERENTIATION OF HUMAN AND OTHER GROUPS OF HEMOLYTIC STREPTOCOCCI , 1933, The Journal of experimental medicine.

[13]  J. Brisson,et al.  Structural and Immunochemical Characterization of the Type VIII Group B Streptococcus Capsular Polysaccharide (*) , 1996, The Journal of Biological Chemistry.

[14]  E. García,et al.  Genetic bases and medical relevance of capsular polysaccharide biosynthesis in pathogenic streptococci. , 2001, Current molecular medicine.

[15]  J. Lam,et al.  Wzx flippase-mediated membrane translocation of sugar polymer precursors in bacteria. , 2013, Environmental microbiology.

[16]  O. Kuipers,et al.  From meadows to milk to mucosa - adaptation of Streptococcus and Lactococcus species to their nutritional environments. , 2012, FEMS microbiology reviews.

[17]  R. Krause,et al.  IMMUNOCHEMICAL STUDIES ON THE SPECIFIC CARBOHYDRATE OF GROUP G STREPTOCOCCI , 1964, The Journal of experimental medicine.

[18]  A. Gamian,et al.  The alpha-L-(1----2)-trirhamnopyranoside epitope on the group-specific polysaccharide of group B streptococci , 1991, Infection and immunity.

[19]  O. Holst,et al.  Biosynthesis of the Unique Wall Teichoic Acid of Staphylococcus aureus Lineage ST395 , 2014, mBio.

[20]  K. Nakano,et al.  Serotype classification of Streptococcus mutans and its detection outside the oral cavity. , 2009, Future microbiology.

[21]  D. Kasper,et al.  Structure of the complex group-specific polysaccharide of group B Streptococcus. , 1987, Biochemistry.

[22]  H. Schwarz,et al.  Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl , 2010, Molecular microbiology.

[23]  T. Eisenstein,et al.  Soluble group- and type-specific antigens from type III group B Streptococcus , 1980, Infection and immunity.

[24]  N. Krishna,et al.  Structure of the group G streptococcal polysaccharide. , 1988, Carbohydrate research.

[25]  J. Naismith,et al.  RmlC, the third enzyme of dTDP-L-rhamnose pathway, is a new class of epimerase , 2000, Nature Structural Biology.

[26]  C. Cambillau,et al.  Differences in Lactococcal Cell Wall Polysaccharide Structure Are Major Determining Factors in Bacteriophage Sensitivity , 2014, mBio.

[27]  Mahavir Singh,et al.  Allosteric competitive inhibitors of the glucose-1-phosphate thymidylyltransferase (RmlA) from Pseudomonas aeruginosa. , 2013, ACS chemical biology.

[28]  S. Kulakauskas,et al.  Cell wall structure and function in lactic acid bacteria , 2014, Microbial Cell Factories.

[29]  W. Köhler The present state of species within the genera Streptococcus and Enterococcus. , 2007, International journal of medical microbiology : IJMM.

[30]  T. Koga,et al.  Biological function of the dTDP-rhamnose synthesis pathway in Streptococcus mutans , 1997, Journal of bacteriology.

[31]  J. Parlebas,et al.  Isolation from Heart Valves of Glycopeptides which share Immunological Properties with Streptococcus haemolyticus Group A Polysaccharides , 1968, Nature.

[32]  B. Eikmanns,et al.  Functional analysis of a PcsB-deficient mutant of group B streptococcus. , 2003, FEMS microbiology letters.

[33]  J. Brisson,et al.  Multiantennary group-specific polysaccharide of group B Streptococcus. , 1988, Biochemistry.

[34]  D. Pritchard,et al.  Structure of the group-specific polysaccharide of group E Streptococcus. , 1985, Carbohydrate research.

[35]  S. Swedo,et al.  Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea , 2003, Nature Medicine.

[36]  T. Doran,et al.  Association of type- and group-specific antigens with the cell wall of serotype III group B streptococcus , 1982, Infection and immunity.

[37]  P. Reeves,et al.  Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2) , 1991, Molecular microbiology.

[38]  P. Brennan,et al.  Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls. , 1990, The Journal of biological chemistry.

[39]  M. de Pedro,et al.  Peptidoglycan structure and architecture. , 2008, FEMS microbiology reviews.

[40]  L. Burrows,et al.  Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. , 2000, Microbiology.

[41]  Gustavo Glusman,et al.  Structural and Genetic Diversity of Group B Streptococcus Capsular Polysaccharides , 2005, Infection and Immunity.

[42]  K. Schleifer,et al.  Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. nov. , 1985 .

[43]  G. Shockman,et al.  Group B, type III streptococcal cell wall: composition and structural aspects revealed through endo-N-acetylmuramidase-catalyzed hydrolysis , 1982, Infection and immunity.

[44]  E. Brown,et al.  Taking aim at wall teichoic acid synthesis: new biology and new leads for antibiotics , 2013, The Journal of Antibiotics.

[45]  Francis C. Neuhaus,et al.  A Continuum of Anionic Charge: Structures and Functions of d-Alanyl-Teichoic Acids in Gram-Positive Bacteria , 2003, Microbiology and Molecular Biology Reviews.

[46]  J. Carapetis,et al.  The global burden of group A streptococcal diseases. , 2005, The Lancet. Infectious diseases.

[47]  ScienceDirect FEMS microbiology reviews , 1993 .

[48]  S. Schrag,et al.  Group B streptococcal disease in infants aged younger than 3 months: systematic review and meta-analysis , 2012, The Lancet.

[49]  Tomohisa Ogawa,et al.  Diversified Carbohydrate-Binding Lectins from Marine Resources , 2011, Journal of amino acids.

[50]  S. Fischer,et al.  Interaction of group B streptococcal opacity variants with the host defense system , 1993, Infection and immunity.

[51]  Samantha L. van der Beek,et al.  GacA is essential for Group A S treptococcus and defines a new class of monomeric dTDP‐4‐dehydrorhamnose reductases (RmlD) , 2015, Molecular microbiology.

[52]  R. Linhardt,et al.  Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules. , 2014, FEMS microbiology reviews.

[53]  H. Heymann,et al.  Structure of streptococcal cell walls. V. Phosphate esters in the walls of group A Streptococcus pyogenes. , 1967, Biochemical and biophysical research communications.

[54]  D. Kasper,et al.  Functional activity of antibodies to the group B polysaccharide of group B streptococci elicited by a polysaccharide-protein conjugate vaccine , 1994, Infection and immunity.

[55]  G. Vasta,et al.  A rhamnose-binding lectin from sea bass (Dicentrarchus labrax) plasma agglutinates and opsonizes pathogenic bacteria. , 2014, Developmental and comparative immunology.

[56]  Haruo Watanabe,et al.  Genetic Features of Clinical Isolates of Streptococcus dysgalactiae subsp. equisimilis Possessing Lancefield's Group A Antigen , 2008, Journal of Clinical Microbiology.

[57]  Haruo Watanabe,et al.  Invasive infection caused by Streptococcus dysgalactiae subsp. equisimilis: characteristics of strains and clinical features , 2011, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.

[58]  T. Koga,et al.  Expression and Characterization of Streptococcal rgp Genes Required for Rhamnan Synthesis in Escherichia coli , 2002, Infection and Immunity.

[59]  C. Weidenmaier,et al.  Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions , 2008, Nature Reviews Microbiology.

[60]  H. Neve,et al.  Investigation of the Relationship between Lactococcal Host Cell Wall Polysaccharide Genotype and 936 Phage Receptor Binding Protein Phylogeny , 2013, Applied and Environmental Microbiology.

[61]  B. Gray,et al.  Characterization of the group-specific polysaccharide of group B Streptococcus. , 1984, Archives of biochemistry and biophysics.

[62]  J. Errington,et al.  A widespread family of bacterial cell wall assembly proteins , 2011, The EMBO journal.

[63]  J. Errey,et al.  RmlC, a C3' and C5' carbohydrate epimerase, appears to operate via an intermediate with an unusual twist boat conformation. , 2007, Journal of Molecular Biology.

[64]  M. Wagner,et al.  An electron microscopic study of the location of peptidoglycan in group A and C streptococcal cell walls. , 1978, Journal of general microbiology.

[65]  Yufang Ma,et al.  Formation of dTDP-Rhamnose Is Essential for Growth of Mycobacteria , 2002, Journal of bacteriology.

[66]  B. Berger-Bächi,et al.  Phylogenetic distribution and membrane topology of the LytR-CpsA-Psr protein family , 2008, BMC Genomics.

[67]  J. Naismith,et al.  The structural basis of the catalytic mechanism and regulation of glucose‐1‐phosphate thymidylyltransferase (RmlA) , 2000, The EMBO journal.

[68]  V. Nizet Stopping superbugs, maintaining the microbiota , 2015, Science Translational Medicine.

[69]  L. Major,et al.  A structural perspective on the enzymes that convert dTDP-d-glucose into dTDP-l-rhamnose. , 2003, Biochemical Society transactions.

[70]  P. Lawson,et al.  Streptococcus castoreus sp. nov., isolated from a beaver (Castor fiber). , 2005, International journal of systematic and evolutionary microbiology.

[71]  J. Musser,et al.  Human Disease Isolates of Serotype M4 and M22 Group A Streptococcus Lack Genes Required for Hyaluronic Acid Capsule Biosynthesis , 2012, mBio.

[72]  M. Atilano,et al.  L-Rhamnosylation of Listeria monocytogenes Wall Teichoic Acids Promotes Resistance to Antimicrobial Peptides by Delaying Interaction with the Membrane , 2015, PLoS pathogens.

[73]  T. Koga,et al.  Identification of a fourth gene involved in dTDP-rhamnose synthesis in Streptococcus mutans , 1997, Journal of bacteriology.

[74]  P. Wright,et al.  Escherichia coli as a glycoprotein production host: recent developments and challenges. , 2014, Current opinion in biotechnology.

[75]  J. Zabriskie,et al.  STUDIES ON STREPTOCOCCAL BACTERIOPHAGES , 1968, The Journal of experimental medicine.

[76]  C. Roca,et al.  Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications , 2015, Front. Microbiol..

[77]  S. L. Chiang,et al.  rfb Mutations in Vibrio cholerae Do Not Affect Surface Production of Toxin-Coregulated Pili but Still Inhibit Intestinal Colonization , 1999, Infection and Immunity.

[78]  J. Carapetis,et al.  Group A streptococcal vaccines: paving a path for accelerated development. , 2013, Vaccine.

[79]  C. Chiu,et al.  A Recombinant Horseshoe Crab Plasma Lectin Recognizes Specific Pathogen-Associated Molecular Patterns of Bacteria through Rhamnose , 2014, PloS one.

[80]  M. Mccarty,et al.  VARIATION IN THE GROUP-SPECIFIC CARBOHYDRATE OF GROUP A STREPTOCOCCI , 1955, The Journal of experimental medicine.

[81]  R. Rappuoli,et al.  Group B Streptococcus: global incidence and vaccine development , 2006, Nature Reviews Microbiology.

[82]  D. Maione,et al.  Group B Streptococcus vaccine: state of the art , 2015, Therapeutic advances in vaccines.

[83]  J. Gready,et al.  The C‐type lectin‐like domain superfamily , 2005, The FEBS journal.

[84]  Jennifer Campbell,et al.  Wall Teichoic Acid Function, Biosynthesis, and Inhibition , 2009, Chembiochem : a European journal of chemical biology.

[85]  R. Facklam,et al.  What Happened to the Streptococci: Overview of Taxonomic and Nomenclature Changes , 2002, Clinical Microbiology Reviews.

[86]  Timothy C. Meredith,et al.  Exposing a chink in the armor of methicillin-resistant Staphylococcus aureus , 2013 .

[87]  D. Werz,et al.  Comparative bioinformatics analysis of the mammalian and bacterial glycomes , 2011 .

[88]  F. Teng,et al.  Further Characterization of the epa Gene Cluster and Epa Polysaccharides of Enterococcus faecalis , 2009, Infection and Immunity.

[89]  V. Nizet,et al.  The classical lancefield antigen of group a Streptococcus is a virulence determinant with implications for vaccine design. , 2014, Cell host & microbe.

[90]  J. Yother Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide biosynthesis and regulation. , 2011, Annual review of microbiology.

[91]  T. Ogawa,et al.  Rhamnose-binding Lectins from Steelhead Trout (Oncorhynchus mykiss) Eggs Recognize Bacterial Lipopolysaccharides and Lipoteichoic Acid , 2002, Bioscience, biotechnology, and biochemistry.

[92]  H. Heymann,et al.  Biosynthesis of Streptococcal Cell Walls: A Rhamnose Polysaccharide , 1963, Science.

[93]  C. São-José,et al.  Phage SPP1 Reversible Adsorption to Bacillus subtilis Cell Wall Teichoic Acids Accelerates Virus Recognition of Membrane Receptor YueB , 2008, Journal of bacteriology.

[94]  J. Mcghee,et al.  Structure of the serotype f polysaccharide antigen of Streptococcus mutans. , 1987, Carbohydrate research.

[95]  R. Rappuoli,et al.  Evaluation of a Group A Streptococcus synthetic oligosaccharide as vaccine candidate. , 2010, Vaccine.

[96]  A. Singh,et al.  Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. , 2011, ACS chemical biology.

[97]  D. Philp,et al.  The structure of NADH in the enzyme dTDP-d-glucose dehydratase (RmlB). , 2003, Journal of the American Chemical Society.

[98]  M. Chapot-Chartier,et al.  Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages , 2014, Front. Microbiol..

[99]  D. Karamata,et al.  The tagGH operon of Bacillus subtilis 168 encodes a two‐component ABC transporter involved in the metabolism of two wall teichoic acids , 1995, Molecular microbiology.

[100]  L. Hancock,et al.  The capsular polysaccharide of Enterococcus faecalis and its relationship to other polysaccharides in the cell wall , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[101]  J. Naismith,et al.  The rhamnose pathway. , 2000, Current opinion in structural biology.

[102]  J. Carapetis,et al.  Progress Toward a Global Group A Streptococcal Vaccine , 2013, The Pediatric infectious disease journal.

[103]  R. Krause SYMPOSIUM ON RELATIONSHIP OF STRUCTURE OF MICROORGANISMS TO THEIR IMMUNOLOGICAL PROPERTIES. IV. ANTIGENIC AND BIOCHEMICAL COMPOSITION OF HEMOLYTIC STREPTOCOCCAL CELL WALLS. , 1963, Bacteriological reviews.

[104]  I. Sutcliffe,et al.  Bioinformatic insights into the biosynthesis of the Group B carbohydrate in Streptococcus agalactiae. , 2008, Microbiology.

[105]  C. Cambillau,et al.  Molecular Insights on the Recognition of a Lactococcus lactis Cell Wall Pellicle by the Phage 1358 Receptor Binding Protein , 2014, Journal of Virology.

[106]  H. Tettelin,et al.  Essential Genes in the Core Genome of the Human Pathogen Streptococcus pyogenes , 2015, Scientific Reports.

[107]  C. Péchoux,et al.  Role of the Group B Antigen of Streptococcus agalactiae: A Peptidoglycan-Anchored Polysaccharide Involved in Cell Wall Biogenesis , 2012, PLoS pathogens.

[108]  Carmen Buchrieser,et al.  Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease , 2002, Molecular microbiology.

[109]  D. Kasper,et al.  Serotypes VI and VIII predominate among group B streptococci isolated from pregnant Japanese women. , 1999, The Journal of infectious diseases.

[110]  G. Weinstock,et al.  Polysaccharide Biosynthesis from a Cluster of Genes Involved In , 1998 .

[111]  C. Whitfield,et al.  ABC Transporters Involved in Export of Cell Surface Glycoconjugates , 2010, Microbiology and Molecular Biology Reviews.

[112]  E. Gotschlich,et al.  ELECTRON MICROSCOPIC STUDIES ON STREPTOCOCCI : II. GROUP A CARBOHYDRATE , 1973 .

[113]  J. Mcghee,et al.  Characterization of the serotype e polysaccharide antigen of Streptococcus mutans. , 1986, Molecular immunology.

[114]  C. Reis e Sousa,et al.  Signaling by myeloid C-type lectin receptors in immunity and homeostasis. , 2012, Annual review of immunology.

[115]  Jacob L.W. Morgan,et al.  Crystallographic snapshot of cellulose synthesis and membrane translocation , 2012, Nature.

[116]  R. Morona,et al.  Characterization of the dTDP‐rhamnose biosynthetic genes encoded in the rfb iocus of Shigella flexneri , 1994, Molecular microbiology.

[117]  G. Weinstock,et al.  Analysis of a Gene Cluster of Enterococcus faecalis Involved in Polysaccharide Biosynthesis , 2000, Infection and Immunity.

[118]  Osamu Nakamura,et al.  The function of rhamnose-binding lectin in innate immunity by restricted binding to Gb3. , 2009, Developmental and comparative immunology.

[119]  Marta Munar,et al.  Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens , 2013, Nature Communications.

[120]  L. Hancock,et al.  Capsular Polysaccharide Production in Enterococcus faecalis and Contribution of CpsF to Capsule Serospecificity , 2009, Journal of bacteriology.

[121]  H. Tsuda,et al.  A novel mechanism for glucose side‐chain formation in rhamnose‐glucose polysaccharide synthesis1 , 2002, FEBS letters.

[122]  Bruce A. Roe,et al.  Complete genome sequence of an M1 strain of Streptococcus pyogenes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[123]  Scott G. Franzblau,et al.  Drug Targeting Mycobacterium tuberculosis Cell Wall Synthesis: Genetics of dTDP-Rhamnose Synthetic Enzymes and Development of a Microtiter Plate-Based Screen for Inhibitors of Conversion of dTDP-Glucose to dTDP-Rhamnose , 2001, Antimicrobial Agents and Chemotherapy.

[124]  M. Winkler,et al.  Essential PcsB putative peptidoglycan hydrolase interacts with the essential FtsXSpn cell division protein in Streptococcus pneumoniae D39 , 2011, Proceedings of the National Academy of Sciences.

[125]  O. Schneewind,et al.  Architects at the bacterial surface — sortases and the assembly of pili with isopeptide bonds , 2011, Nature Reviews Microbiology.

[126]  M. Mccarty THE LYSIS OF GROUP A HEMOLYTIC STREPTOCOCCI BY EXTRACELLULAR ENZYMES OF STREPTOMYCES ALBUS , 1952, The Journal of experimental medicine.

[127]  A. Reingold,et al.  Population-based study of invasive disease due to beta-hemolytic streptococci of groups other than A and B. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[128]  D. Missiakas,et al.  Staphylococcus aureus Mutants Lacking the LytR-CpsA-Psr Family of Enzymes Release Cell Wall Teichoic Acids into the Extracellular Medium , 2013, Journal of bacteriology.

[129]  T. Kindt,et al.  Structure of the streptococcal groups A, A-variant and C carbohydrates. , 1978, Immunochemistry.

[130]  P. Serror,et al.  The surface rhamnopolysaccharide epa of Enterococcus faecalis is a key determinant of intestinal colonization. , 2015, The Journal of infectious diseases.

[131]  C. Weidenmaier,et al.  Wall Teichoic Acid Glycosylation Governs Staphylococcus aureus Nasal Colonization , 2015, mBio.

[132]  D. Maskell,et al.  High-resolution structures of RmlC from Streptococcus suis in complex with substrate analogs locate the active site of this class of enzyme. , 2003, Structure.

[133]  M. Wagner,et al.  Immunoelectron microscopic study of the location of group-specific and protein type-specific antigens of group B streptococci. , 1980, Journal of general microbiology.

[134]  Waldemar Vollmer,et al.  Architecture of peptidoglycan: more data and more models. , 2010, Trends in microbiology.

[135]  J. R. van der Ploeg,et al.  The serotype-specific glucose side chain of rhamnose-glucose polysaccharides is essential for adsorption of bacteriophage M102 to Streptococcus mutans. , 2009, FEMS microbiology letters.

[136]  T. Silhavy,et al.  The bacterial cell envelope. , 2010, Cold Spring Harbor perspectives in biology.

[137]  O. Holst,et al.  The structure of the wall teichoic acid isolated from Enterococcus faecalis strain 12030. , 2012, Carbohydrate research.

[138]  S. Walker,et al.  Wall teichoic acids of gram-positive bacteria. , 2013, Annual review of microbiology.

[139]  C. Péchoux,et al.  Cell Surface of Lactococcus lactis Is Covered by a Protective Polysaccharide Pellicle* , 2010, The Journal of Biological Chemistry.

[140]  Katherine O'Riordan,et al.  Staphylococcus aureus Capsular Polysaccharides , 2004, Clinical Microbiology Reviews.

[141]  M. Mäki,et al.  Biosynthesis of 6-deoxyhexose glycans in bacteria. , 2003, Glycobiology.

[142]  F. Vogensen,et al.  Identification of Lactococcus lactis Genes Required for Bacteriophage Adsorption , 2004, Applied and Environmental Microbiology.

[143]  J. Zabriskie,et al.  Group A streptococcus (GAS) carbohydrate as an immunogen for protection against GAS infection. , 2006, The Journal of infectious diseases.

[144]  T. Koga,et al.  Genes Involved in Cell Wall Localization and Side Chain Formation of Rhamnose-Glucose Polysaccharide inStreptococcus mutans , 1998, Journal of bacteriology.

[145]  D. Kasper,et al.  Characterization of the Linkage between the Type III Capsular Polysaccharide and the Bacterial Cell Wall of Group BStreptococcus * , 2000, The Journal of Biological Chemistry.

[146]  J. V. van Putten,et al.  Variation of Neisseria gonorrhoeae Lipooligosaccharide Directs Dendritic Cell–Induced T Helper Responses , 2009, PLoS pathogens.

[147]  S. Moineau,et al.  Bacteriophages in food fermentations: new frontiers in a continuous arms race. , 2013, Annual review of food science and technology.

[148]  H. Tsuda,et al.  A Novel Gene Required for Rhamnose-Glucose Polysaccharide Synthesis in Streptococcus mutans , 1999, Journal of bacteriology.

[149]  M. Nahm,et al.  Pneumococcal Capsules and Their Types: Past, Present, and Future , 2015, Clinical Microbiology Reviews.

[150]  P. V. Bramhachari,et al.  Molecular markers for discriminating Streptococcus pyogenes and S. dysgalactiae subspecies equisimilis , 2010, European Journal of Clinical Microbiology & Infectious Diseases.

[151]  J. Coligan,et al.  Carbohydrate fingerprints of streptococcal cells , 1981, Journal of clinical microbiology.

[152]  Gordon Leonard,et al.  Variation on a theme of SDR. dTDP-6-deoxy-L- lyxo-4-hexulose reductase (RmlD) shows a new Mg2+-dependent dimerization mode. , 2002, Structure.

[153]  G. Weinstock,et al.  Evidence that the Enterococcal Polysaccharide Antigen Gene (epa) Cluster Is Widespread in Enterococcus faecalis and Influences Resistance to Phagocytic Killing of E. faecalis , 2002, Infection and Immunity.

[154]  W. Benitz Epidemiology of Invasive Group B Streptococcal Disease in the United States, 1999-2005 , 2009 .

[155]  R. Krause STUDIES ON BACTERIOPHAGES OF HEMOLYTIC STREPTOCOCCI : I. FACTORS INFLUENCING THE INTERACTION OF PHAGE AND SUSCEPTIBLE HOST CELL , 1957 .

[156]  S. Pincus,et al.  Group B streptococcal opacity variants , 1992, Journal of bacteriology.

[157]  D. Kasper,et al.  Microcapsule of type III strains of group B Streptococcus: production and morphology , 1976, Infection and immunity.

[158]  D. Missiakas,et al.  The Capsular Polysaccharide of Staphylococcus aureus Is Attached to Peptidoglycan by the LytR-CpsA-Psr (LCP) Family of Enzymes* , 2014, The Journal of Biological Chemistry.

[159]  Julian Parkhill,et al.  Genetic Analysis of the Capsular Biosynthetic Locus from All 90 Pneumococcal Serotypes , 2006, PLoS genetics.

[160]  M. Mccarty,et al.  VARIATION IN THE GROUP-SPECIFIC CARBOHYDRATE OF GROUP C HEMOLYTIC STREPTOCOCCI , 1962, The Journal of experimental medicine.

[161]  J. Reymond,et al.  Structure and mechanism of an active lipid-linked oligosaccharide flippase , 2015, Nature.

[162]  S. Hull,et al.  Comparison of Loss of Serum Resistance by Defined Lipopolysaccharide Mutants and an Acapsular Mutant of UropathogenicEscherichia coli O75:K5 , 1998, Infection and Immunity.

[163]  R. Lewis,et al.  Attachment of capsular polysaccharide to the cell wall in Streptococcus pneumoniae. , 2012, Microbial drug resistance.