Slice coherence in a query-based architecture for 3D heterogeneous printing

We report on 3D printing of artifacts with a structured, inhomogeneous interior. The interior is decomposed into cells defined by a 3D Voronoi diagram and their sites. When printing such objects, most slices the printer deposits are topologically the same and change only locally in the interior. The slicing algorithm capitalizes on this coherence and minimizes print head moves that do not deposit material. This approach has been implemented on a client/server architecture that computes the slices on the geometry side. The slices are printed by fused deposition, and are communicated upon demand. Display Omitted We explore 3D Voronoi-based heterogeneous printing.We utilize Euler loops to minimize non-extruding fast travels.The motion paths of consecutive slices are almost the same.The motion paths are not generated from scratch at every slice.Only 3 local cases can arise when updating the motion paths.

[1]  Constantin Filote,et al.  CONSIDERATIONS UPON A NEW TRIPOD JOINT SOLUTION , 2013 .

[2]  Bahattin Koc,et al.  Functionally heterogeneous porous scaffold design for tissue engineering , 2012, Comput. Aided Des..

[3]  Somnath Ghosh,et al.  Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model , 1996 .

[4]  Hans-Peter Seidel,et al.  Animating deformable objects using sparse spacetime constraints , 2014, ACM Trans. Graph..

[5]  H. Chow,et al.  Layered Modeling of Porous Structures with Voronoi Diagrams , 2007 .

[6]  Hong Ye,et al.  An image analysis method to obtain the effective thermal conductivity of metallic foams via a redefined concept of shape factor , 2014 .

[7]  Gábor Székely,et al.  3D Voronoi Skeletons and Their Usage for the Characterization and Recognition of 3D Organ Shape , 1997, Comput. Vis. Image Underst..

[8]  A. Dolenc,et al.  Rapid prototyping from a computer scientist’s point of view , 1996 .

[9]  Fritz B. Prinz,et al.  Project MAXWELL: Towards Rapid Realization of Superior Products , 1992 .

[10]  J. L. Finney,et al.  Characterisation of models of multicomponent amorphous metals: The radical alternative to the Voronoi polyhedron , 1982 .

[11]  S. Biner Thermo-elastic analysis of functionally graded materials using Voronoi elements , 2001 .

[12]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[13]  Neri Oxman,et al.  Variable property rapid prototyping , 2011 .

[14]  Neri Oxman,et al.  Voxel-based fabrication through material property mapping: A design method for bitmap printing , 2015, Comput. Aided Des..

[15]  Hans-Peter Seidel,et al.  Interactive by-example design of artistic packing layouts , 2013, ACM Trans. Graph..

[16]  Jeremy K. Mason,et al.  Quadruple nodes and grain boundary connectivity in three dimensions , 2014 .

[17]  Vadim Shapiro,et al.  Geometric interoperability via queries , 2014, Comput. Aided Des..

[18]  D. Weaire,et al.  Soap, cells and statistics – random patterns in two dimensions , 1984 .

[19]  X. Y. Kou,et al.  Heterogeneous object modeling: A review , 2007, Comput. Aided Des..

[20]  Isaac Bober Make a stand , 2014 .

[21]  N. Torabian,et al.  Microstructure Modelling of Dual-Phase Steel Using SEM Micrographs and Voronoi Polycrystal Models , 2013, Metallography, Microstructure, and Analysis.

[22]  Cohen-OrDaniel,et al.  Build-to-last , 2014 .

[23]  Sorkine-HornungOlga,et al.  Make it stand , 2013 .

[24]  Vijay Chandru,et al.  Voxel-based modeling for layered manufacturing , 1995, IEEE Computer Graphics and Applications.

[25]  Christoph M. Hoffmann,et al.  Robustness in Geometric Computations , 2001, J. Comput. Inf. Sci. Eng..

[26]  Keith Callahan Build to Last , 2018 .

[27]  Qi Ge,et al.  Active materials by four-dimension printing , 2013 .

[28]  Jtf Jos Keurentjes,et al.  Quantitative morphology analysis of polymers foamed with supercritical carbon dioxide using Voronoi diagrams , 2007 .

[29]  Mikael Nygårds,et al.  Three-dimensional periodic Voronoi grain models and micromechanical FE-simulations of a two-phase steel , 2002 .

[30]  P. Verboven,et al.  3D Virtual Pome Fruit Tissue Generation Based on Cell Growth Modeling , 2013, Food and Bioprocess Technology.

[31]  H. K. Mebatsion,et al.  Modelling fruit (micro)structures, why and how? , 2008 .

[32]  Michel RIVEILL SOAP , 2015, Technologies logicielles Architectures des systèmes.