Spatiotemporal complexity of a predator–prey system with constant harvest rate

Abstract In this paper, we investigate the emergence of a predator–prey system with Michaelis–Menten-type predator–prey systems with reaction–diffusion and constant harvest rate. We derive the conditions for Hopf and Turing bifurcation on the spatial domain. The results of spatial pattern analysis, via numerical simulations, typical spatial pattern formation is isolated groups, i.e., stripe-like, patch-like and so on. Our results show that modeling by reaction–diffusion equations is an appropriate tool for investigating fundamental mechanisms of complex spatiotemporal dynamics. It will be useful for studying the dynamic complexity of ecosystems.

[1]  Julien Clinton Sprott,et al.  A simple spatiotemporal chaotic Lotka–Volterra model , 2005 .

[2]  Frederic Bartumeus,et al.  MUTUAL INTERFERENCE BETWEEN PREDATORS CAN GIVE RISE TO TURING SPATIAL PATTERNS , 2002 .

[3]  Marcus R. Garvie Finite-Difference Schemes for Reaction–Diffusion Equations Modeling Predator–Prey Interactions in MATLAB , 2007, Bulletin of mathematical biology.

[4]  Daniel A Griffith,et al.  Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. , 2006, Ecology.

[5]  Thilo Gross,et al.  Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations. , 2007, Journal of theoretical biology.

[6]  Kimmo Kaski,et al.  Dimensionality effects in Turing pattern formation , 2003 .

[7]  P. Maini,et al.  The Turing Model Comes of Molecular Age , 2006, Science.

[8]  Maoan Han,et al.  Dynamics in a ratio-dependent predator–prey model with predator harvesting , 2006 .

[9]  S. Levin,et al.  Mathematical and Computational Challenges in Population Biology and Ecosystems Science , 1997, Science.

[10]  Horst Malchow,et al.  Spatiotemporal Complexity of Plankton and Fish Dynamics , 2002, SIAM Rev..

[11]  Wan-Tong Li,et al.  Traveling waves in a diffusive predator–prey model with holling type-III functional response , 2008 .

[12]  Axel Hutt,et al.  Spontaneous and evoked activity in extended neural populations with gamma-distributed spatial interactions and transmission delay , 2007 .

[13]  Zhen Jin,et al.  Formation of spatial patterns in an epidemic model with constant removal rate of the infectives , 2006, q-bio/0610006.

[14]  A. Zhabotinsky,et al.  Pattern formation arising from interactions between Turing and wave instabilities , 2002 .

[15]  Wolfgang A. Halang,et al.  Li–Yorke chaos in a spatiotemporal chaotic system , 2007 .

[16]  M. Lakshmanan,et al.  Coexistence of synchronized and desynchronized patterns in coupled chaotic dynamical systems , 2008 .

[17]  Dongmei Xiao,et al.  Bifurcations of a Ratio-Dependent Predator-Prey System with Constant Rate Harvesting , 2005, SIAM J. Appl. Math..

[18]  S. J. Linz,et al.  Model for pattern formation of granular matter on vibratory conveyors , 2009 .

[19]  Philip K Maini,et al.  Using mathematical models to help understand biological pattern formation. , 2004, Comptes rendus biologies.

[20]  Yang Kuang,et al.  Global qualitative analysis of a ratio-dependent predator–prey system , 1998 .

[21]  Zhijun Liu,et al.  Modelling and analysis of an impulsive SI model with Monod-Haldane functional response , 2009 .

[22]  Teemu Leppänen,et al.  Computational studies of pattern formation in Turing systems , 2004 .

[23]  Zhen Jin,et al.  Spatiotemporal complexity of a ratio-dependent predator-prey system. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  M. Sanduloviciu,et al.  On the physical basis of pattern formation in nonlinear systems , 2003 .

[25]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[26]  Edgar Knobloch,et al.  Pattern formation in the three-dimensional reaction-diffusion systems , 1999 .