Interpolating functions of matrices on zeros of quasi‐kernel polynomials

SUMMARY The paper deals with Krylov methods for approximating functions of matrices via interpolation. In this frame residual smoothing techniques based on quasi-kernel polynomials are considered. Theoretical

[1]  Tosio Kato Perturbation theory for linear operators , 1966 .

[2]  Vladimir Druskin,et al.  Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic , 1995, Numer. Linear Algebra Appl..

[3]  V. SIMONCINIy,et al.  TRANSFER FUNCTIONS AND RESOLVENT NORM APPROXIMATION OF LARGE MATRICES , 1998 .

[4]  H. Tal-Ezer High Degree Polynomial Interpolation in Newton Form , 1991, SIAM J. Sci. Comput..

[5]  Marlis Hochbruck,et al.  Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..

[6]  Thomas A. Manteuffel,et al.  On hybrid iterative methods for nonsymmetric systems of linear equations , 1996 .

[7]  Olavi Nevanlinna,et al.  Hessenberg matrices in krylov subspaces and the computation of the spectrum , 1995 .

[8]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[9]  R. Freund Quasi-kernel polynomials and their use in non-Hermitian matrix iterations , 1992 .

[10]  Lloyd N. Trefethen,et al.  Computation of pseudospectra , 1999, Acta Numerica.

[11]  Lloyd N. Trefethen,et al.  Generalizing Eigenvalue Theorems to Pseudospectra Theorems , 2001, SIAM J. Sci. Comput..

[12]  F. R. Gantmakher The Theory of Matrices , 1984 .

[13]  Lloyd N. Trefethen,et al.  A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems , 1992, SIAM J. Matrix Anal. Appl..

[14]  P. Novati A polynomial method based on Fejèr points for the computation of functions of unsymmetric matrices , 2003 .

[15]  L. Knizhnerman Calculation of functions of unsymmetric matrices using Arnoldi's method , 1991 .

[16]  Lloyd N. Trefethen,et al.  Pseudospectra of Linear Operators , 1997, SIAM Rev..

[17]  J. Walsh Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .

[18]  Anne Greenbaum,et al.  Using Nonorthogonal Lanczos Vectors in the Computation of Matrix Functions , 1998, SIAM J. Sci. Comput..

[19]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[20]  Y. Saad Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .

[21]  Michael Eiermann,et al.  Fields of values and iterative methods , 1993 .

[22]  Marco Vianello,et al.  Interpolating discrete advection-diffusion propagators at spectral Leja sequences , 2004 .

[23]  M. Rozložník,et al.  Numerical stability of GMRES , 1995 .

[24]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[25]  Martin H. Gutknecht,et al.  Lanczos-type solvers for nonsymmetric linear systems of equations , 1997, Acta Numerica.

[26]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[27]  Gene H. Golub,et al.  Matrix computations , 1983 .

[28]  P. Halmos A Hilbert Space Problem Book , 1967 .

[29]  Y. Saad The Lanczos Biorthogonalization Algorithm and Other Oblique Projection Methods for Solving Large Unsymmetric Systems , 1982 .

[30]  I. Moret,et al.  An interpolatory approximation of the matrix exponential based on Faber polynomials , 2001 .