Evaluation of Weighted Residual Methods for the Solution of a Population Balance Model Describing Bubbly Flows: The Least-Squares, Galerkin, Tau, and Orthogonal Collocation Methods

In dispersed gas–liquid flows, the bubble size distribution plays an important role in the phase structure and interphase forces, which, in turn, determine the multiphase hydrodynamic behaviors, including the spatial profiles of the gas fraction, gas and liquid velocities, and mixing and mass-transfer behaviors. Thus, fluid particle coalescence and breakage phenomena are important for optimal operation of many industrial process units like the bubble column reactors. The population balance equation (PBE) is considered a concept for describing the evolution of populations of countable entities such as the bubbles in the bubble column. In recent studies, the least-squares method has been adopted for the solution of population balance (PB) problems. A favorable property of the weighted residual methods such as the least-squares technique is that the solution of the density function itself can be obtained from the fundamental PBE formulation, that is, not moment formulations. Hence, in this framework, the inn...

[1]  J. Lasheras,et al.  A review of statistical models for the break-up of an immiscible fluid immersed into a fully developed turbulent flow , 2002 .

[2]  Z. Gu,et al.  Advances in numerical methods for the solution of population balance equations for disperse phase systems , 2009 .

[3]  S. Maaß,et al.  DETERMINATION OF BREAKAGE RATES USING SINGLE DROP EXPERIMENTS , 2012 .

[4]  Carlos A. Dorao,et al.  Time–space-property least squares spectral method for population balance problems , 2007 .

[5]  D. Ramkrishna The Status of Population Balances , 1985 .

[6]  Doraiswami Ramkrishna,et al.  CFD simulation of bubble columns incorporating population balance modeling , 2008 .

[7]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[8]  He’an Luo,et al.  A novel theoretical model of breakage rate and daughter size distribution for droplet in turbulent flows , 2013 .

[9]  Alan W. Mahoney,et al.  Population balance modeling. Promise for the future , 2002 .

[10]  S. Rigopoulos Population balance modelling of polydispersed particles in reactive flows , 2010 .

[11]  J. P. Pontaza,et al.  Space-time coupled spectral/ hp least-squares finite element formulation for the incompressible Navier-Stokes equations , 2004 .

[12]  H. Jakobsen,et al.  Modeling of the Dispersed-Phase Size Distribution in Bubble Columns , 2002 .

[13]  H. Jakobsen,et al.  Macroscopic description of droplet–film interaction for gas–liquid systems , 2009 .

[14]  J. P. Pontaza,et al.  Least-squares variational principles and the finite element method: theory, formulations, and models for solid and fluid mechanics , 2005 .

[15]  H. Jakobsen,et al.  Least Squares Higher Order Method for the Solution of a Combined Multifluid-Population Balance Model: Modeling and Implementation Issues , 2012 .

[16]  W. Ritz Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. , 1909 .

[17]  H. Jakobsen,et al.  Least-squares spectral method for solving advective population balance problems , 2007 .

[18]  Ilkka Turunen,et al.  Multi-phase-multi-size-group model for the inclusion of population balances into the CFD simulation of gas-liquid bubbly flows , 2006 .

[19]  H. Blanch,et al.  Bubble coalescence and break‐up in air‐sparged bubble columns , 1990 .

[20]  Carlos Alberto Dorao,et al.  A least squares method for the solution of population balance problems , 2006, Comput. Chem. Eng..

[21]  Khalid Alhumaizi,et al.  Numerical analysis of a reaction-diffusion-convection system , 2003, Comput. Chem. Eng..

[22]  Hugo A. Jakobsen,et al.  Evaluation of weighted residual methods for the solution of the pellet equations: The orthogonal collocation, Galerkin, tau and least-squares methods , 2013, Comput. Chem. Eng..

[23]  Eckhard Krepper,et al.  The inhomogeneous MUSIG model for the simulation of polydispersed flows , 2008 .

[24]  Jiyuan Tu,et al.  Two-fluid and population balance models for subcooled boiling flow , 2006 .

[25]  Doraiswami Ramkrishna,et al.  Efficient solution of population balance equations with discontinuities by finite elements , 2002 .

[26]  Zhengjie Zhu,et al.  The Least-Squares Spectral Element Method Solution of the Gas-Liquid Multi-fluid Model Coupled with the Population Balance Equation , 2009 .

[27]  Hans-Jörg Bart,et al.  Parameter optimisation and validation for droplet population balances , 2014 .

[28]  A. G. Fredrickson,et al.  A new set of population balance equations for microbial and cell cultures , 2002 .

[29]  R. Flumerfelt,et al.  Bubble size distributions in freely expanded polymer foams , 1997 .

[30]  Frank-Peter Weiss,et al.  Evolution of the structure of a gas–liquid two-phase flow in a large vertical pipe , 2007 .

[31]  Carlos Alberto Dorao,et al.  A least-squares method with direct minimization for the solution of the breakage-coalescence population balance equation , 2008, Math. Comput. Simul..

[32]  Ernst Dieter Gilles,et al.  A population model for crystallization processes using two independent particle properties , 2001 .

[33]  Y. Liao,et al.  A literature review of theoretical models for drop and bubble breakup in turbulent dispersions , 2009 .

[34]  Hallvard F. Svendsen,et al.  Modeling of Vertical Bubble-Driven Flows , 1997 .

[35]  Pavel B. Bochev,et al.  Finite Element Methods of Least-Squares Type , 1998, SIAM Rev..

[36]  L. Patruno Experimental and Numerical Investigations of Liquid Fragmentation and Droplet Generation for Gas Processing at High Pressures , 2010 .

[37]  Eckhard Krepper,et al.  Development of co-current air–water flow in a vertical pipe , 2005 .

[38]  H. Jakobsen,et al.  Model based on population balance for the simulation of bubble columns using methods of the least-square type , 2011 .

[39]  H. Jakobsen,et al.  Evaluation of Breakage and Coalescence Kernels for Vertical Bubbly Flows Using a Combined Multifluid-population Balance Model Solved by Least Squares Method , 2012 .

[40]  J. Solsvik,et al.  A numerical study of a two property catalyst/sorbent pellet design for the sorption-enhanced steam–methane reforming process: Modeling complexity and parameter sensitivity study , 2011 .

[41]  Michael M. J. Proot,et al.  Mass- and Momentum Conservation of the Least-Squares Spectral Element Method for the Stokes Problem , 2006, J. Sci. Comput..

[42]  J. Solsvik,et al.  On the constitutive equations for fluid particle breakage , 2013 .

[43]  J. Bellan,et al.  Yield Optimization and Scaling of Fluidized Beds for Tar Production from Biomass , 2001 .

[44]  J. N. Reddy,et al.  Spectral/ hp least-squares finite element formulation for the Navier-Stokes equations , 2003 .

[45]  Mohammad Shahrokhi,et al.  SOLUTION OF POPULATION BALANCE EQUATIONS IN EMULSION POLYMERIZATION USING METHOD OF MOMENTS , 2013 .

[46]  J. P. Pontaza A new consistent splitting scheme for incompressible Navier-Stokes flows: A least-squares spectral element implementation , 2007, J. Comput. Phys..

[47]  J. Solsvik,et al.  Evaluation of breakage kernels for liquid-liquid systems: Solution of the population balance equation by the least-squares method , 2014 .

[48]  Carlos A. Dorao,et al.  Simulation of chemical reactors using the least-squares spectral element method , 2010 .

[49]  Milorad P. Dudukovic,et al.  Three‐dimensional simulation of bubble column flows with bubble coalescence and breakup , 2005 .

[50]  Investigation of Discrete Population Balance Models and Breakage Kernels for Dilute Emulsification Systems , 2011 .

[51]  Carlos A. Dorao,et al.  Analysis of breakage kernels for population balance modelling , 2009 .

[52]  Hugo A. Jakobsen,et al.  On the Consistent Modeling of Porous Catalyst Pellets: Mass and Molar Formulations , 2012 .

[53]  Michael F. Malone,et al.  Experimental studies and population balance equation models for breakage prediction of emulsion drop size distributions , 2009 .

[54]  Carlos A. Dorao,et al.  Modeling of Bubble Column Reactors: Progress and Limitations , 2005 .

[55]  P. I. Barton,et al.  Effective parameter estimation within a multi-dimensional population balance model framework , 2010 .

[56]  E. Krepper,et al.  Gas–liquid flows in medium and large vertical pipes , 2011 .

[57]  Carlos A. Dorao,et al.  hp-adaptive least squares spectral element method for population balance equations , 2008 .

[58]  Doraiswami Ramkrishna,et al.  Analysis of population balance—IV: The precise connection between Monte Carlo simulation and population balances , 1981 .

[59]  Carlos A. Dorao,et al.  Prediction of the evolution of the dispersed phase in bubbly flow problems , 2008 .

[60]  S. Ibrahim,et al.  Review on Applicable breakup/coalescence models in turbulent liquid-liquid flows , 2013 .

[61]  J. Solsvik,et al.  On the population balance equation , 2012 .

[62]  R. D. Vigil,et al.  Quadrature method of moments for aggregation-breakage processes. , 2003, Journal of colloid and interface science.

[63]  Boris V. Balakin,et al.  Population balance model for nucleation, growth, aggregation, and breakage of hydrate particles in turbulent flow , 2009 .

[64]  S. Maaß,et al.  Experimental investigations and modelling of breakage phenomena in stirred liquid/liquid systems , 2007 .

[65]  Gene H. Golub,et al.  Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.

[66]  Milorad P. Dudukovic,et al.  CFD modeling of bubble columns flows: implementation of population balance , 2004 .

[67]  B. Jiang The Least-Squares Finite Element Method , 1998 .

[68]  J. Seinfeld,et al.  Sectional representations for simulating aerosol dynamics , 1980 .

[69]  Daniele Marchisio,et al.  Multivariate Quadrature-Based Moments Methods for turbulent polydisperse gas–liquid systems , 2013 .

[70]  K. R. Rout A study of the sorption-enhanced steam methane reforming process , 2012 .

[71]  L. Padmanabhan,et al.  Use of orthogonal collocation methods for the modeling of catalyst particles—I. Analysis of the multiplicity of the solutions , 1974 .

[72]  M. Gunzburger,et al.  Least-squares finite-element methods for optimization and control problems for the stokes equations , 2003 .

[73]  Lawrence L. Tavlarides,et al.  Description of interaction processes in agitated liquid-liquid dispersions , 1977 .

[74]  Michael M. J. Proot,et al.  A Least-Squares Spectral Element Formulation for the Stokes Problem , 2002, J. Sci. Comput..

[75]  Y. Liao,et al.  A literature review on mechanisms and models for the coalescence process of fluid particles , 2010 .

[76]  Solution of bubble number density with breakage and coalescence in a bubble column by Least-Squares Method , 2009 .

[77]  J. P. Pontaza A least-squares finite element formulation for unsteady incompressible flows with improved velocity-pressure coupling , 2006, J. Comput. Phys..

[78]  D. Ramkrishna,et al.  Solution of population balance equations by MWR , 1977 .

[79]  Markus Kraft,et al.  Coupling a stochastic soot population balance to gas-phase chemistry using operator splitting , 2007 .

[80]  Ville Alopaeus,et al.  Modelling local bubble size distributions in agitated vessels , 2007 .

[81]  Hugo A. Jakobsen,et al.  Effects of Jacobi polynomials on the numerical solution of the pellet equation using the orthogonal collocation, Galerkin, tau and least squares methods , 2012, Comput. Chem. Eng..

[82]  F. Puel,et al.  Monitoring silicone oil droplets during emulsification in stirred vessel: Effect of dispersed phase concentration and viscosity , 2014 .

[83]  Hans-Jörg Bart,et al.  PPBLAB: A New Multivariate Population Balance Environment for Particulate System Modelling and Simulation , 2012 .

[84]  Hugo A. Jakobsen,et al.  Modeling of multicomponent mass diffusion in porous spherical pellets: Application to steam methane reforming and methanol synthesis , 2011 .

[85]  J. P. Pontaza,et al.  Least-squares finite element formulations for viscous incompressible and compressible fluid flows , 2006 .

[86]  H. Jakobsen,et al.  Time-property least-squares spectral method for population balance equations , 2009 .

[87]  Markus Kraft,et al.  Statistical Approximation of the Inverse Problem in Multivariate Population Balance Modeling , 2010 .

[88]  J. Solsvik,et al.  On the solution of the population balance equation for bubbly flows using the high-order least squares method: implementation issues , 2013 .

[89]  Chul H. Song,et al.  Modeling of bubble coalescence and break-up considering turbulent suppression phenomena in bubbly two-phase flow , 2013 .

[90]  J. F. Mitre,et al.  Comparison of the accuracy and performance of quadrature-based methods for population balance problems with simultaneous breakage and aggregation , 2010, Comput. Chem. Eng..

[91]  Carlos A. Dorao,et al.  The quadrature method of moments and its relationship with the method of weighted residuals , 2006 .

[92]  Denis Dochain,et al.  Optimal selection of orthogonal polynomials applied to the integration of chemical reactor equations by collocation methods , 2000 .

[93]  Carlos A. Dorao,et al.  Numerical calculation of the moments of the population balance equation , 2006 .

[94]  P. Daoutidis,et al.  Numerical solution of multi-variable cell population balance models. II. Spectral methods , 2001 .

[95]  R. W. Thatcher,et al.  On mass conservation in least-squares methods , 2005 .

[96]  Costas Kiparissides,et al.  Part III: Dynamic evolution of the particle size distribution in batch and continuous particulate processes: A Galerkin on finite elements approach , 2005 .

[97]  Daniele Marchisio,et al.  On the Comparison between Population Balance Models for CFD Simulation of Bubble Columns , 2005 .

[98]  C. D. Immanuel,et al.  Parameter estimation strategies in batch emulsion polymerization , 2010 .

[99]  Daniele Marchisio,et al.  Solution of population balance equations using the direct quadrature method of moments , 2005 .

[100]  H. Jakobsen,et al.  On the Modeling and Simulation of Higher Order Breakage for Vertical Bubbly Flows Using the Least Squares Method: Applications for Bubble Column and Pipe Flows , 2012 .

[101]  Robert Vichnevetsky,et al.  Use of Functional Approximation Methods in the Computer Solution of Initial Value Partial Differential Equation Problems , 1969, IEEE Transactions on Computers.

[102]  Ville Alopaeus,et al.  Validation of bubble breakage, coalescence and mass transfer models for gas–liquid dispersion in agitated vessel , 2006 .

[103]  Pierre Ruyer,et al.  Comparison of several models for multi-size bubbly flows on an adiabatic experiment , 2010 .

[104]  D. Marchisio,et al.  Drop breakage in liquid-liquid stirred dispersions : Modelling of single drop breakage , 2007 .

[105]  Jesse T. Pikturna,et al.  Quadrature method of moments for population‐balance equations , 2003 .

[106]  Margaritis Kostoglou,et al.  On sectional techniques for the solution of the breakage equation , 2009, Comput. Chem. Eng..

[107]  H. Jakobsen,et al.  A Combined Multifluid-Population Balance Model for Vertical Gas−Liquid Bubble-Driven Flows Considering Bubble Column Operating Conditions , 2011 .