Biomass functions and nutrient contents of European beech, oak, sycamore maple and ash and their meaning for the biomass supply chain

[1]  Hon Loong Lam,et al.  Transportation decision tool for optimisation of integrated biomass flow with vehicle capacity constraints , 2016 .

[2]  R. Woerdehoff Kohlenstoffspeicherung als Teilziel der strategischen Waldbauplanung , 2016 .

[3]  C. Hennig,et al.  Sustainable feedstock potential – a limitation for the bio-based economy? , 2016 .

[4]  Holger Militz,et al.  Improved resource efficiency and cascading utilisation of renewable materials , 2016 .

[5]  David L. R. Affleck,et al.  Generalized and synthetic regression estimators for randomized branch sampling , 2015 .

[6]  C. Sanquetta,et al.  Simultaneous estimation as alternative to independent modeling of tree biomass , 2015, Annals of Forest Science.

[7]  C. Ammer,et al.  Biomass equations for seven different tree species growing in coppice-with-standards forests in Central Germany , 2014 .

[8]  J. Hansen,et al.  Waldwachstumskundliche Softwaresysteme auf Basis von TreeGrOSS , 2014 .

[9]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[10]  Nährstoffentzüge durch die Holz- und Biomassenutzung in Wäldern. Teil 1: Schätzfunktionen für Biomasse und Nährelemente und ihre Anwendung in Szenariorechnungen , 2014 .

[11]  Anna Ekman,et al.  Bioresource utilisation by sustainable technologies in new value-added biorefinery concepts - two case studies from food and forest industry , 2013 .

[12]  Lauri Hetemäki,et al.  Studying the future of the forest sector: Review and implications for long-term outlook studies , 2013 .

[13]  Kes McCormick,et al.  The Bioeconomy in Europe: An Overview , 2013 .

[14]  S. Jose,et al.  Nutrient Use Efficiency of Three Fast Growing Hardwood Species across a Resource Gradient , 2012 .

[15]  Udo Mantau,et al.  Holzrohstoffbilanz Deutschland : Entwicklungen und Szenarien des Holzaufkommens und der Holzverwendung von 1987 bis 2015 , 2012 .

[16]  H. Pretzsch,et al.  Evidence of variant intra- and interspecific scaling of tree crown structure and relevance for allometric theory , 2012, Oecologia.

[17]  L. Saint-Andre,et al.  Ontogeny partly explains the apparent heterogeneity of published biomass equations for Fagus sylvatica in central Europe , 2011 .

[18]  Patrizia Gasparini,et al.  Aboveground tree volume and phytomass prediction equations for forest species in Italy , 2011, European Journal of Forest Research.

[19]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[20]  A. Henningsen,et al.  systemfit: A Package for Estimating Systems of Simultaneous Equations in R , 2007 .

[21]  J. Dhôte,et al.  Development of total aboveground volume equations for seven important forest tree species in France , 2006 .

[22]  Giorgio Alberti,et al.  Aboveground biomass relationships for mixed ash (Fraxinus excelsior L. and Ulmus glabra Hudson) stands in Eastern Prealps of Friuli Venezia Giulia (Italy) , 2005 .

[23]  Raisa Mäkipää,et al.  Biomass and stem volume equations for tree species in Europe , 2005, Silva Fennica Monographs.

[24]  M. Graham CONFRONTING MULTICOLLINEARITY IN ECOLOGICAL MULTIPLE REGRESSION , 2003 .

[25]  H. Pretzsch,et al.  Oberirdische holzige Biomasse in Kiefern-/Buchen- und Eichen-/Buchen-Mischbeständen , 2003, Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch.

[26]  Bernard R. Parresol,et al.  Additivity of nonlinear biomass equations , 2001 .

[27]  Q. Ponette,et al.  Relationships between forest tree species, stand production and stand nutrient amount , 2000 .

[28]  James H. Brown,et al.  The fourth dimension of life: fractal geometry and allometric scaling of organisms. , 1999, Science.

[29]  B. Efron,et al.  Bootstrap confidence intervals , 1996 .

[30]  Richard J. Smith Logarithmic transformation bias in allometry , 1993 .

[31]  L. Magee,et al.  R 2 Measures Based on Wald and Likelihood Ratio Joint Significance Tests , 1990 .

[32]  M. Černý,et al.  Biomass of picea abies (L.) Karst. in midwestern bohemia , 1990 .

[33]  L. Marklund,et al.  Biomass functions for pine, spruce and birch in Sweden , 1988 .

[34]  Harry T. Valentine,et al.  Subsampling trees for biomass, volume or mineral content , 1984 .

[35]  Peter M. Vitousek,et al.  Nutrient Cycling and Nutrient Use Efficiency , 1982, The American Naturalist.

[36]  H. Akaike Likelihood of a model and information criteria , 1981 .

[37]  G. Baskerville Use of Logarithmic Regression in the Estimation of Plant Biomass , 1972 .

[38]  R. Bunce,et al.  Biomass and Production of Trees in a Mixed Deciduous Woodland: I. Girth and Height as Parameters for the Estimation of Tree Dry Weight , 1968 .

[39]  R. J. Jessen,et al.  Determining the Fruit Count on a Tree by Randomized Branch Sampling , 1955 .