A bandwidth-optimized reduced-complexity equalized multicarrier transceiver

A bandwidth-optimized and equalized multicarrier transceiver that achieves near-optimum performance at a practical complexity level is described. The equalizer used is a relatively short FIR filter whose taps and delay are set to optimize the performance of the multicarrier transceiver. Simulation results on a set of carrier-serving-area digital subscriber loops are also presented to demonstrate the separate and joint effects of bandwidth optimization and equalization on performance. Finally, the intriguing idea of using a pole-zero equalizer to achieve the high performance of long FIR equalizers at a much lower implementation cost is investigated.