Whole-home gesture recognition using wireless signals

This paper presents WiSee, a novel gesture recognition system that leverages wireless signals (e.g., Wi-Fi) to enable whole-home sensing and recognition of human gestures. Since wireless signals do not require line-of-sight and can traverse through walls, WiSee can enable whole-home gesture recognition using few wireless sources. Further, it achieves this goal without requiring instrumentation of the human body with sensing devices. We implement a proof-of-concept prototype of WiSee using USRP-N210s and evaluate it in both an office environment and a two- bedroom apartment. Our results show that WiSee can identify and classify a set of nine gestures with an average accuracy of 94%.

[1]  Desney S. Tan,et al.  Humantenna: using the body as an antenna for real-time whole-body interaction , 2012, CHI.

[2]  G. Charvat,et al.  A Through-Dielectric Radar Imaging System , 2010, IEEE Transactions on Antennas and Propagation.

[3]  Kate Ching-Ju Lin,et al.  Random access heterogeneous MIMO networks , 2011, SIGCOMM.

[4]  Graeme E. Smith,et al.  Through-the-Wall Sensing of Personnel Using Passive Bistatic WiFi Radar at Standoff Distances , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Srinivasan Seshan,et al.  Clearing the RF smog: making 802.11n robust to cross-technology interference , 2011, SIGCOMM.

[6]  Philip Levis,et al.  Achieving single channel, full duplex wireless communication , 2010, MobiCom.

[7]  Srinivasan Seshan,et al.  Clearing the RF smog: making 802.11n robust to cross-technology interference , 2011, SIGCOMM.

[8]  Youngwook Kim,et al.  Human Activity Classification Based on Micro-Doppler Signatures Using a Support Vector Machine , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Neal Patwari,et al.  Through-Wall Motion Tracking Using Variance-Based Radio Tomography Networks , 2009 .

[10]  Neal Patwari,et al.  Through-Wall Tracking Using Variance-Based Radio Tomography Networks , 2009, ArXiv.

[11]  Tom Minka,et al.  Spot Localization using PHY Layer Information , 2012 .

[12]  Jie Xiong,et al.  Towards fine-grained radio-based indoor location , 2012, HotMobile '12.

[13]  Tom Minka,et al.  You are facing the Mona Lisa: spot localization using PHY layer information , 2012, MobiSys '12.

[14]  Venkata N. Padmanabhan,et al.  Indoor localization without the pain , 2010, MobiCom.

[15]  Yang Zhao,et al.  Robust Estimators for Variance-Based Device-Free Localization and Tracking , 2011, IEEE Transactions on Mobile Computing.

[16]  Joseph A. Paradiso,et al.  The magic carpet: physical sensing for immersive environments , 1997, CHI Extended Abstracts.

[17]  Patrick Olivier,et al.  Digits: freehand 3D interactions anywhere using a wrist-worn gloveless sensor , 2012, UIST.

[18]  ZhangYongguang,et al.  Fine-grained channel access in wireless LAN , 2010 .

[19]  Jie Xiong,et al.  ArrayTrack: A Fine-Grained Indoor Location System , 2011, NSDI.

[20]  Desney S. Tan,et al.  SoundWave: using the doppler effect to sense gestures , 2012, CHI.

[21]  M. Beigl,et al.  Challenges for device-free radio-based activity recognition , 2011 .

[22]  Andrew W. Fitzgibbon,et al.  Real-time human pose recognition in parts from single depth images , 2011, CVPR 2011.

[23]  Jiansong Zhang,et al.  Fine-Grained Channel Access in Wireless LAN , 2013, IEEE/ACM Transactions on Networking.

[24]  Neal Patwari,et al.  Radio Tomographic Imaging with Wireless Networks , 2010, IEEE Transactions on Mobile Computing.

[25]  Dina Katabi,et al.  Zigzag decoding: combating hidden terminals in wireless networks , 2008, SIGCOMM '08.

[26]  Tyler S. Ralston,et al.  Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system , 2010, 2010 IEEE International Symposium on Phased Array Systems and Technology.

[27]  Desney S. Tan,et al.  Skinput: appropriating the body as an input surface , 2010, CHI.