An Efficient Lattice Boltzmann Model for Steady Convection–Diffusion Equation

In this paper, an efficient lattice Boltzmann model for n-dimensional steady convection–diffusion equation with variable coefficients is proposed through modifying the equilibrium distribution function properly, and the Chapman–Enskog analysis shows that the steady convection–diffusion equation with variable coefficients can be recovered exactly. Detailed simulations are performed to test the model, and the results show that the accuracy and efficiency of the present model are better than previous models.

[1]  Baochang Shi,et al.  Modified lattice Boltzmann scheme for nonlinear convection diffusion equations , 2012 .

[2]  Ning Pan,et al.  Three-dimensional effect on the effective thermal conductivity of porous media , 2007 .

[3]  Maria Morandi Cecchi,et al.  The Best-Approximation Weighted-Residuals method for the steady convection-diffusion-reaction problem , 2011, Math. Comput. Simul..

[4]  Zhenhua Chai,et al.  A novel lattice Boltzmann model for the Poisson equation , 2008 .

[5]  Zhenhua Chai,et al.  Simulation of electro-osmotic flow in microchannel with lattice Boltzmann method , 2007 .

[6]  R. Sman,et al.  Convection-Diffusion Lattice Boltzmann Scheme for Irregular Lattices , 2000 .

[7]  H. Herrmann,et al.  Relativistic lattice Boltzmann method for quark-gluon plasma simulations , 2011, 1109.0640.

[8]  Abhijit S Joshi,et al.  Multiphase lattice Boltzmann method for particle suspensions. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Shuang Wang,et al.  A Multilevel Finite Difference Scheme for One-Dimensional Burgers Equation Derived from the Lattice Boltzmann Method , 2012, J. Appl. Math..

[10]  Baochang Shi,et al.  Lattice Boltzmann model for nonlinear convection-diffusion equations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  P. Dellar Electromagnetic waves in lattice Boltzmann magnetohydrodynamics , 2010 .

[12]  Chuguang Zheng,et al.  Chequerboard effects on spurious currents in the lattice Boltzmann equation for two-phase flows , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  S. Brill,et al.  Analytical upstream collocation solution of a quadratically forced steady‐state convection‐diffusion equation , 2012 .

[14]  Herbert Egger,et al.  A hybrid mixed discontinuous Galerkin finite-element method for convection–diffusion problems , 2010 .

[15]  Analysis and application of high resolution numerical perturbation algorithm for Convective-Diffusion Equation , 2012 .

[16]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[17]  I. Ginzburg Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation , 2005 .

[18]  Xiaoqing Zhang,et al.  A lattice Boltzmann model for elliptic equations with variable coefficient , 2012, Appl. Math. Comput..

[19]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[20]  Xiaoyi He,et al.  Lattice Boltzmann simulation of electrochemical systems , 2000 .

[21]  S Succi,et al.  Fast lattice Boltzmann solver for relativistic hydrodynamics. , 2010, Physical review letters.

[22]  Markus Bause,et al.  Higher order finite element approximation of systems of convection-diffusion-reaction equations with small diffusion , 2013, J. Comput. Appl. Math..

[23]  S. Succi,et al.  A fluctuating lattice Boltzmann scheme for the one-dimensional KPZ equation , 2012 .

[24]  Peter M. A. Sloot,et al.  Lattice dependence of reaction-diffusion in lattice Boltzmann modeling , 2000 .

[25]  Sauro Succi,et al.  Recent Advances in Lattice Boltzmann Computing , 1995 .

[26]  Hiroaki Yoshida,et al.  Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation , 2010, J. Comput. Phys..

[27]  Mahmud Ashrafizaadeh,et al.  A comparison of non-Newtonian models for lattice Boltzmann blood flow simulations , 2009, Comput. Math. Appl..

[28]  Ophélie Angelini,et al.  A finite volume method on general meshes for a degenerate parabolic convection–reaction–diffusion equation , 2010, Numerische Mathematik.

[29]  Z. Chai,et al.  Lattice Boltzmann model for the convection-diffusion equation. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[31]  Moran Wang,et al.  Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels. , 2006, Journal of colloid and interface science.

[32]  B. Shi,et al.  Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method , 2002 .

[33]  R. Codina Comparison of some finite element methods for solving the diffusion-convection-reaction equation , 1998 .

[34]  Emanuele Galligani A nonlinearity lagging for the solution of nonlinear steady state reaction diffusion problems , 2013, Commun. Nonlinear Sci. Numer. Simul..

[35]  Zhi Dou,et al.  Numerical study of non-uniqueness of the factors influencing relative permeability in heterogeneous porous media by lattice Boltzmann method , 2013 .