MATHEMATICAL ENGINEERING TECHNICAL REPORTS A Structural Model on a Hypercube Represented by Optimal Transport
暂无分享,去创建一个
[1] Gwilym M. Jenkins,et al. Time series analysis, forecasting and control , 1972 .
[2] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[3] D. Edwards. Introduction to graphical modelling , 1995 .
[4] H. Halkin,et al. Determinants of the renal clearance of digoxin , 1975, Clinical pharmacology and therapeutics.
[5] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[6] R. Nelsen. An Introduction to Copulas , 1998 .
[7] M. Yuan,et al. Model selection and estimation in the Gaussian graphical model , 2007 .
[8] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[9] George E. P. Box,et al. Time Series Analysis: Forecasting and Control , 1977 .
[10] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[11] C. Villani. Topics in Optimal Transportation , 2003 .
[12] Wenjiang J. Fu,et al. Asymptotics for lasso-type estimators , 2000 .
[13] P. Young,et al. Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.
[14] R. Christensen. Introduction to Graphical Modeling , 2001 .
[15] Luis A. Caffarelli,et al. Monotonicity Properties of Optimal Transportation¶and the FKG and Related Inequalities , 2000 .
[16] J. Fernández-Durán,et al. Circular Distributions Based on Nonnegative Trigonometric Sums , 2004, Biometrics.
[17] Stephen P. Boyd,et al. Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[18] Florentina Bunea,et al. Sparse Density Estimation with l1 Penalties , 2007, COLT.
[19] MATHEMATICAL ENGINEERING TECHNICAL REPORTS Parametric modeling based on the gradient maps of convex functions , 2006 .
[20] Alexandre d'Aspremont,et al. Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .
[21] T. Sei. Gradient modeling for multivariate quantitative data , 2011 .
[22] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[23] Arkadi Nemirovski,et al. Robust Convex Optimization , 1998, Math. Oper. Res..
[24] R. McCann. Existence and uniqueness of monotone measure-preserving maps , 1995 .