On Nested Chain Decompositions of Normalized Matching Posets of Rank 3

In 1975, J. Griggs conjectured that a normalized matching rank-unimodal poset possesses a nested chain decomposition. This elegant conjecture remains open even for posets of rank 3. Recently, Hsu, Logan, and Shahriari have made progress by developing techniques that produce nested chain decompositions for posets with certain rank numbers. As a demonstration of their methods, they prove that the conjecture is true for all rank 3 posets of width at most 7. In this paper, we present new general techniques for creating nested chain decompositions, and, as a corollary, we demonstrate the validity of the conjecture for all rank 3 posets of width at most 11.

[1]  L. D. Meshalkin Generalization of Sperner’s Theorem on the Number of Subsets of a Finite Set , 1963 .

[2]  James Stuart Tanton,et al.  Encyclopedia of Mathematics , 2005 .

[3]  Koichiro Yamamoto Logarithmic order of free distributive lattice , 1954 .

[4]  Emden R. Gansner,et al.  On the lattice of order ideals of an up-down poset , 1982, Discret. Math..

[5]  Jerrold R. Griggs Problems on chain partitions , 1988, Discret. Math..

[6]  D. J. Kleitman On an extremal property of antichains in partial orders , 1974 .

[7]  Shahriar Shahriari,et al.  The generalized Füredi conjecture holds for finite linear lattices , 2006, Discret. Math..

[8]  Ronald L. Graham,et al.  Some Results on Matching in Bipartite Graphs , 1969 .

[9]  Yi Wang Nested chain partitions of LYM posets , 2005, Discret. Appl. Math..

[10]  Daniel J. Kleitman,et al.  Normalized Matching in Direct Products of Partial Orders , 1973 .

[11]  Michael Saks A short proof of the existence of k-saturated partitions of partially ordered sets , 1979 .

[12]  Daniel J. Kleitman,et al.  Strong Versions of Sperner's Theorem , 1976, J. Comb. Theory, Ser. A.

[13]  Jerrold R. Griggs,et al.  On Chains and Sperner k-Families in Ranked Posets, II , 1980, J. Comb. Theory, Ser. A.

[14]  D. Lubell A Short Proof of Sperner’s Lemma , 1966 .

[15]  B. Bollobás On generalized graphs , 1965 .

[16]  Douglas B. West,et al.  Some Remarks on Normalized Matching , 1983, J. Comb. Theory, Ser. A.

[17]  I. Anderson Combinatorics of Finite Sets , 1987 .

[18]  Shahriar Shahriari,et al.  Methods for nesting rank 3 normalized matching rank-unimodal posets , 2009, Discret. Math..

[19]  Shahriar Shahriari,et al.  Partitioning the Boolean lattice into a minimal number of chains of relatively uniform size , 2003, Eur. J. Comb..

[20]  Jerrold R. Griggs Matchings, cutsets, and chain partitions in graded posets , 1995, Discret. Math..

[21]  L. D. Mesalkin A Generalization of Sperner’s Theorem on the Number of Subsets of a Finite Set , 1963 .

[22]  L. H. Harper The Morphology of Partially Ordered Sets , 1974, J. Comb. Theory, Ser. A.

[23]  K. Engel Sperner Theory , 1996 .

[24]  Jerrold R. Griggs,et al.  Sufficient Conditions for a Symmetric Chain Order , 1977 .

[25]  Daniel J. Kleitman,et al.  The Structure of Sperner k-Families , 1976, J. Comb. Theory, Ser. A.