A Noncommutative Theory of Penrose Tilings

Considering quantales as generalised noncommutative spaces, we address as an example a quantale Pen based on the Penrose tilings of the plane. We study in general the representations of involutive quantales on those of binary relations, and show that in the case of Pen the algebraically irreducible representations provide a complete classification of the set of Penrose tilings from which its representation as a quotient of Cantor space is recovered.

[1]  Pedro Resende,et al.  Quantales, finite observations and strong bisimulation , 2001, Theor. Comput. Sci..

[2]  Joan Wick Pelletier,et al.  On the quantisation of points , 2001 .

[3]  Bernhard Banaschewski,et al.  The spectral theory of commutative C*-algebras: The constructive spectrum , 2000 .

[4]  Pedro Resende,et al.  Sup-lattice 2-forms and quantales ∗ , 2002 .

[5]  Jiří Rosický,et al.  Simple Involutive Quantales , 1997 .

[6]  Steven J. Vickers,et al.  Localic sup-lattices and tropological systems , 2003, Theor. Comput. Sci..

[7]  Pedro Resende Tropological systems are points of quantales , 2002 .

[8]  Walter Tholen,et al.  Galois theory, Hopf algebras, and semiabelian categories , 2004 .

[9]  Bob Coecke,et al.  HOW QUANTALES EMERGE BY INTRODUCING INDUCTION WITHIN THE OPERATIONAL APPROACH , 1998 .

[10]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[11]  David Kruml,et al.  Spatial Quantales , 2002, Appl. Categorical Struct..

[12]  Pedro Resende,et al.  Modular Specification of Concurrent Systems with Observational Logic , 1998, WADT.

[13]  Jirí Rosický,et al.  On Quantales and Spectra of C*-Algebras , 2003, Appl. Categorical Struct..

[14]  Pedro Resende,et al.  On quantales that classify C*-algebras ∗ , 2004 .

[15]  Bob Coecke,et al.  On a Duality of Quantales Emerging from an Operational Resolution , 1999 .

[16]  Bernhard Banaschewski,et al.  The spectral theory of commutative C*-algebras: The constructive Gelfand-Mazur theorem , 2000 .

[17]  Joan Wick Pelletier,et al.  On the quantisation of spaces , 2002 .

[18]  A. Joyal,et al.  An extension of the Galois theory of Grothendieck , 1984 .

[19]  Pedro Resende,et al.  Quantales and Observational Semantics , 2000 .

[20]  G. C. Shephard,et al.  Tilings and Patterns , 1990 .

[21]  Robin Giles,et al.  A Non-Commutative Generalization of Topology , 1971 .

[22]  Steven J. Vickers,et al.  Quantales, observational logic and process semantics , 1993, Mathematical Structures in Computer Science.

[23]  Gilles Pisier,et al.  Introduction to Operator Space Theory , 2003 .

[24]  David Moore,et al.  Current Research in Operational Quantum Logic , 2000 .