Separating extended disc features from the protoplanet in PDS 70 using VLT/SINFONI

Transition discs are prime targets to look for protoplanets and study planet–disc interactions. We present VLT/SINFONI observations of PDS 70, a transition disc with a recently claimed embedded protoplanet. We take advantage of the angular and spectral diversity present in our data for an optimal PSF modelling and subtraction using principal component analysis (PCA). We report the redetection of PDS 70 b, both the front and far side of the outer disc edge, and the detection of several extended features in the annular gap. We compare spectral differential imaging applied before (PCA-SADI), and after (PCA-ASDI) angular differential imaging. Our tests suggest that PCA-SADI better recovers extended features, while PCA-ASDI is more sensitive to point sources. We adapted the negative fake companion (NEGFC) technique to infer the astrometry of the companion, and derived r = 193.5 ± 4.9 mas and PA =158.7° ± 3.0°. We used both NEGFC and ANDROMEDA to infer the K-band spectro-photometry of the protoplanet, and found results consistent with recent VLT/SPHERE observations, except for their 2018/02 epoch measurement in the K2 filter. Finally, we derived an upper limit of Ṁb < 1.26 × 10^(−7) [5M_(Jup)/M_b][R_b/R_(Jup)]M_(Jup) yr^(−1) for the accretion rate of the companion based on an adaptation of PCA-SADI/PCA-ASDI around the Brγ line (assuming no extinction).

[1]  David Lafreniere,et al.  HST/NICMOS DETECTION OF HR 8799 b IN 1998 , 2009, 0902.3247.

[2]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[3]  Randall D. Bartos,et al.  Speckle suppression and companion detection using coherent differential imaging , 2016, 1610.00606.

[4]  Norbert N. Hubin,et al.  SINFONI - Integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[5]  F. B. Amara,et al.  Adaptive Optics Systems , 2013 .

[6]  Dmitry Savransky,et al.  Complex Spiral Structure in the HD 100546 Transitional Disk as Revealed by GPI and MagAO , 2017, 1704.06260.

[7]  Michael F. Skrutskie,et al.  Circumstellar Material Associated with Solar-Type Pre-Main-Sequence Stars: A Possible Constraint on the Timescale for Planet Building , 1989 .

[8]  C. A. Grady,et al.  DISCOVERY OF SMALL-SCALE SPIRAL STRUCTURES IN THE DISK OF SAO 206462 (HD 135344B): IMPLICATIONS FOR THE PHYSICAL STATE OF THE DISK FROM SPIRAL DENSITY WAVE THEORY , 2012, 1202.6139.

[9]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[10]  Dimitri Mawet,et al.  DISCOVERY OF A COMPANION CANDIDATE IN THE HD 169142 TRANSITION DISK AND THE POSSIBILITY OF MULTIPLE PLANET FORMATION , 2014, 1408.0813.

[11]  R. Briguglio,et al.  DISCOVERY OF Hα EMISSION FROM THE CLOSE COMPANION INSIDE THE GAP OF TRANSITIONAL DISK HD 142527 , 2014, 1401.1273.

[12]  L. Hartmann,et al.  Disk Accretion Rates for T Tauri Stars , 1998 .

[13]  E. Serabyn,et al.  Discovery of a point-like source and a third spiral arm in the transition disk around the Herbig Ae star MWC 758 , 2017, 1710.11393.

[14]  A. Boccaletti,et al.  A Giant Planet Imaged in the Disk of the Young Star β Pictoris , 2010, Science.

[15]  Laird M. Close,et al.  Magellan Adaptive Optics Imaging of PDS 70: Measuring the Mass Accretion Rate of a Young Giant Planet within a Gapped Disk , 2018, The Astrophysical Journal Letters.

[16]  A. Skemer,et al.  Accreting protoplanets in the LkCa 15 transition disk , 2015, Nature.

[17]  Esther Buenzli,et al.  Small vs. large dust grains in transitional disks: do different cavity sizes indicate a planet? - SAO 206462 (HD 135344B) in polarized light with VLT/NACO , 2013, 1311.4195.

[18]  Bruce A. Macintosh,et al.  Detection of Carbon Monoxide and Water Absorption Lines in an Exoplanet Atmosphere , 2013, Science.

[19]  D. Mawet,et al.  Impact of angular differential imaging on circumstellar disk images , 2012, 1207.5909.

[20]  D. Mawet,et al.  Formation and evolution of planetary systems: the impact of high-angular resolution optical techniques , 2009, 0912.3915.

[21]  James E. Owen,et al.  The Origin and Evolution of Transition Discs: Successes, Problems, and Open Questions , 2015, Publications of the Astronomical Society of Australia.

[22]  S. Casassus Resolved Observations of Transition Disks , 2016, Publications of the Astronomical Society of Australia.

[23]  Nonlinear Propagation of Planet-Generated Tidal Waves , 2001, astro-ph/0110496.

[24]  Julien H. Girard,et al.  Medium-resolution integral-field spectroscopy for high-contrast exoplanet imaging , 2018, Astronomy & Astrophysics.

[25]  Bertrand Mennesson,et al.  FUNDAMENTAL LIMITATIONS OF HIGH CONTRAST IMAGING SET BY SMALL SAMPLE STATISTICS , 2014, 1407.2247.

[26]  James M. Stone,et al.  THE STRUCTURE OF SPIRAL SHOCKS EXCITED BY PLANETARY-MASS COMPANIONS , 2015, 1507.03599.

[27]  Timothy D. Brandt,et al.  THE STRUCTURE OF PRE-TRANSITIONAL PROTOPLANETARY DISKS. I. RADIATIVE TRANSFER MODELING OF THE DISK+CAVITY IN THE PDS 70 SYSTEM , 2012, 1209.3772.

[28]  G. Chauvin,et al.  Discovery of a low-mass companion to the F7V star HD 984 , 2015, 1507.08291.

[29]  J. Kuhn,et al.  Imaging Polarimetric Observations of a New Circumstellar Disk System , 2001, astro-ph/0105239.

[30]  J. Gregorio-Hetem,et al.  Classification of a selected sample of weak T Tauri stars , 2002 .

[31]  Zhaohuan Zhu,et al.  The Disk Substructures at High Angular Resolution Project (DSHARP). II. Characteristics of Annular Substructures , 2018, The Astrophysical Journal.

[32]  Vincent Geers,et al.  A Major Asymmetric Dust Trap in a Transition Disk , 2013, Science.

[33]  Ruobing Dong,et al.  OBSERVATIONAL SIGNATURES OF PLANETS IN PROTOPLANETARY DISKS: SPIRAL ARMS OBSERVED IN SCATTERED LIGHT IMAGING CAN BE INDUCED BY PLANETS , 2015, 1507.03596.

[34]  D. Fantinel,et al.  Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70 , 2018, Astronomy & Astrophysics.

[35]  Julien H. Girard,et al.  Characterization of low-mass companion HD 142527 B , 2018, Astronomy & Astrophysics.

[36]  Craig Loomis,et al.  Data reduction pipeline for the CHARIS integral-field spectrograph I: detector readout calibration and data cube extraction , 2017, 1706.03067.

[37]  Olivier Guyon,et al.  POLARIMETRIC IMAGING OF LARGE CAVITY STRUCTURES IN THE PRE-TRANSITIONAL PROTOPLANETARY DISK AROUND PDS 70: OBSERVATIONS OF THE DISK , 2012, 1208.2075.

[38]  Dimitri Mawet,et al.  Flows of gas through a protoplanetary gap , 2013, Nature.

[39]  Observations of gas flows inside a protoplanetary gap , 2013, 1305.6062.

[40]  Jason J. Wang,et al.  An Optical/Near-infrared Investigation of HD 100546 b with the Gemini Planet Imager and MagAO , 2017, 1704.06317.

[41]  E. Serabyn,et al.  Deep Imaging Search for Planets Forming in the TW Hya Protoplanetary Disk with the Keck/NIRC2 Vortex Coronagraph , 2017, 1706.07489.

[42]  H. Ford,et al.  Imaging Spectroscopy for Extrasolar Planet Detection , 2002, astro-ph/0209078.

[43]  D. Mouillet,et al.  Direct exoplanet detection and characterization using the ANDROMEDA method: Performance on VLT/NaCo data , 2015, 1508.06406.

[44]  Beth Biller,et al.  A LIKELY CLOSE-IN LOW-MASS STELLAR COMPANION TO THE TRANSITIONAL DISK STAR HD 142527 , 2012, 1206.2654.

[45]  Marc Van Droogenbroeck,et al.  VIP: Vortex Image Processing Package for High-contrast Direct Imaging , 2017, 1705.06184.

[46]  C. Marois,et al.  Confidence Level and Sensitivity Limits in High-Contrast Imaging , 2007, 0709.3548.

[47]  N. Thatte,et al.  Very high contrast integral field spectroscopy of AB Doradus C: 9-mag contrast at 0.2 arcsec without a coronagraph using spectral deconvolution , 2007, astro-ph/0703565.

[48]  Julien H. Girard,et al.  Searching for companions down to 2 AU from β Pictoris using the L′-band AGPM coronagraph on VLT/NACO , 2013, 1311.4298.

[49]  T. Fusco,et al.  Orbital and atmospheric characterization of the planet within the gap of the PDS 70 transition disk , 2018, Astronomy & Astrophysics.

[50]  Adam Amara,et al.  PYNPOINT: An image processing package for finding exoplanets , 2012, 1207.6637.

[51]  Fredrik T. Rantakyrö,et al.  Gemini planet imager observational calibrations IV: wavelength calibration and flexure correction for the integral field spectograph , 2014, Astronomical Telescopes and Instrumentation.

[52]  James R. Graham,et al.  MODELING SELF-SUBTRACTION IN ANGULAR DIFFERENTIAL IMAGING: APPLICATION TO THE HD 32297 DEBRIS DISK , 2013, 1310.7026.

[53]  D. Mouillet,et al.  Asymmetric features in the protoplanetary disk MWC 758 , 2015, 1505.05325.

[54]  Heidelberg,et al.  VERY LARGE TELESCOPE/NACO POLARIMETRIC DIFFERENTIAL IMAGING OF HD100546—DISK STRUCTURE AND DUST GRAIN PROPERTIES BETWEEN 10 AND 140 AU , 2011, 1106.1101.

[55]  Julien H. Girard,et al.  A YOUNG PROTOPLANET CANDIDATE EMBEDDED IN THE CIRCUMSTELLAR DISK OF HD 100546 , 2013, 1302.7122.

[56]  A. Boccaletti,et al.  Search for cool giant exoplanets around young and nearby stars - VLT/NaCo near-infrared phase-coronagraphic and differential imaging , 2014, 1404.3502.

[57]  L. Hartmann,et al.  The Mass Accretion Rates of Intermediate-Mass T Tauri Stars , 2004 .

[58]  Laird M. Close,et al.  THE GEMINI NICI PLANET-FINDING CAMPAIGN: THE COMPANION DETECTION PIPELINE , 2013, 1310.4172.

[59]  A. Vigan,et al.  Astrometric and photometric accuracies in high contrast imaging: The SPHERE speckle calibration tool (SpeCal) , 2018, Astronomy & Astrophysics.

[60]  Dimitri Mawet,et al.  A New Standard for Assessing the Performance of High Contrast Imaging Systems , 2017, 1711.01215.

[61]  Julien H. Girard,et al.  Investigation of the inner structures around HD 169142 with VLT/SPHERE , 2017, 1709.01734.

[62]  M. Benisty,et al.  Ring shaped dust accumulation in transition disks , 2012, 1207.6485.

[63]  J. Wisniewski,et al.  THE STRUCTURE OF PRE-TRANSITIONAL PROTOPLANETARY DISKS. II. AZIMUTHAL ASYMMETRIES, DIFFERENT RADIAL DISTRIBUTIONS OF LARGE AND SMALL DUST GRAINS IN PDS 70, , 2014, 1411.2587.

[64]  Catherine Espaillat,et al.  RESOLVED IMAGES OF LARGE CAVITIES IN PROTOPLANETARY TRANSITION DISKS , 2011, 1103.0284.

[65]  Dimitri Mawet,et al.  VLT/SPHERE robust astrometry of the HR8799 planets at milliarcsecond-level accuracy - Orbital architecture analysis with PyAstrOFit , 2016, 1610.04014.

[66]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[67]  D. Mawet,et al.  Coronagraphic imaging of three weak-line T Tauri stars: evidence of planetary formation around PDS 70 , 2006 .

[68]  M. Ireland,et al.  LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION? , 2011, 1110.3808.

[69]  Daniel J. Price,et al.  Circumbinary, not transitional: on the spiral arms, cavity, shadows, fast radial flows, streamers, and horseshoe in the HD 142527 disc , 2018, 1803.02484.

[70]  A. Boccaletti,et al.  RESOLVING THE PLANET-HOSTING INNER REGIONS OF THE LkCa 15 DISK , 2016, 1608.08642.

[71]  A. Burrows,et al.  RESOLVING THE HD 100546 PROTOPLANETARY SYSTEM WITH THE GEMINI PLANET IMAGER: EVIDENCE FOR MULTIPLE FORMING, ACCRETING PLANETS , 2015, 1511.02526.

[72]  Laird M. Close,et al.  AN ENIGMATIC POINT-LIKE FEATURE WITHIN THE HD 169142 TRANSITIONAL DISK, , 2014, 1408.0794.

[73]  Brendan P. Bowler,et al.  Imaging Extrasolar Giant Planets , 2016, 1605.02731.

[74]  J. Wisniewski,et al.  Differences in the Gas and Dust Distribution in the Transitional Disk of a Sun-like Young Star, PDS 70 , 2018, 1804.00529.

[75]  M. Min,et al.  Imaging diagnostics for transitional discs , 2013, 1309.1039.

[76]  R. Soummer,et al.  DETECTION AND CHARACTERIZATION OF EXOPLANETS AND DISKS USING PROJECTIONS ON KARHUNEN–LOÈVE EIGENIMAGES , 2012, 1207.4197.

[77]  Julien H. Girard,et al.  An M-dwarf star in the transition disk of Herbig HD 142527: physical parameters and orbital elements. , 2015, 1511.09390.