Piezoresistance Coefficients of (100) Silicon nMOSFETs Measured at Low and High ($\sim$1.5 GPa) Channel Stress

A flexure-based four-point mechanical wafer bending setup is used to apply large uniaxial tensile stress (up to 1.2 GPa) on industrial nMOSFETs with 0 to ~700 MPa of process-induced stress. This provides the highest uniaxial channel stress to date at ~1.5 GPa. The stress altered drain-current is measured for long and short (50-140 nm) devices and the extracted pi-coefficients are observed to be approximately constant for stresses up to ~1.5 GPa. For short devices, this trend is seen only after correcting for the significant degradation in the pi-coefficients observed due to parasitic source/drain series resistances (Rsd/)

[1]  Stephen P. Timoshenko,et al.  Strength of Materials. , 1931, Nature.

[2]  Charles S. Smith Piezoresistance Effect in Germanium and Silicon , 1954 .

[3]  J. Welser,et al.  Comparative study of phonon‐limited mobility of two‐dimensional electrons in strained and unstrained Si metal–oxide–semiconductor field‐effect transistors , 1996 .

[4]  Guido Groeseneken,et al.  The effect of externally imposed mechanical stress on the hot-carrier-induced degradation of deep-sub micron nMOSFET's , 1997 .

[5]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[6]  John D. Cressler,et al.  A total resistance slope-based effective channel mobility extraction method for deep submicrometer CMOS technology , 1999 .

[7]  Stuart T. Smith,et al.  Flexures: Elements of Elastic Mechanisms , 2000 .

[8]  D. Antoniadis,et al.  Investigating the relationship between electron mobility and velocity in deeply scaled NMOS via mechanical stress , 2001, IEEE Electron Device Letters.

[9]  Richard C. Jaeger,et al.  Piezoresistive characteristics of short-channel MOSFETs on (100) silicon , 2001 .

[10]  H. Nayfeh,et al.  Strained silicon MOSFET technology , 2002, Digest. International Electron Devices Meeting,.

[11]  M. Fischetti,et al.  On the enhanced electron mobility in strained-silicon inversion layers , 2002 .

[12]  David B. Scott,et al.  Effects of uniaxial mechanical stress on drive current of 0.13 /spl mu/m MOSFETs , 2003 .

[13]  P. Solomon,et al.  Six-band k⋅p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness , 2003 .

[14]  D. Lea,et al.  High speed 45nm gate length CMOSFETs integrated into a 90nm bulk technology incorporating strain engineering , 2003, IEEE International Electron Devices Meeting 2003.

[15]  G. Reimbold,et al.  Electrical analysis of mechanical stress induced by STI in short MOSFETs using externally applied stress , 2004, IEEE Transactions on Electron Devices.

[16]  M. Bohr,et al.  A logic nanotechnology featuring strained-silicon , 2004, IEEE Electron Device Letters.

[17]  D. T. Grider,et al.  35% drive current improvement from recessed-SiGe drain extensions on 37 nm gate length PMOS , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[18]  A. Toriumi,et al.  In-plane mobility anisotropy and universality under uni-axial strains in nand p-MOS inversion layers on (100), [110], and (111) Si , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[19]  S. Thompson,et al.  Key differences for process-induced uniaxial vs. substrate-induced biaxial stressed Si and Ge channel MOSFETs , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[20]  K. Saraswat,et al.  Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[21]  T. Tezuka,et al.  High current drive uniaxially-strained SGOI pMOSFETs fabricated by lateral strain relaxation technique , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[22]  M. Sherony,et al.  65nm cmos technology for low power applications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[23]  S. Natarajan,et al.  A 65nm ultra low power logic platform technology using uni-axial strained silicon transistors , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[24]  M. Jurczak,et al.  Exploring the limits of stress-enhanced hole mobility , 2005, IEEE Electron Device Letters.

[25]  Nirav Shah,et al.  STRESS MODELING OF NANOSCALE MOSFET , 2005 .

[26]  R. Wise,et al.  Fundamentals of silicon material properties for successful exploitation of strain engineering in modern CMOS manufacturing , 2006, IEEE Transactions on Electron Devices.