Fractals, Dimension, and Formal Languages

We consider classes of sets of r-adic expansions of reals specified by means of the theory of formal languages or automata theory. It is shown how these specifications are used to calculate the Hausdorff dimension and Hausdorff measure of such sets

[1]  Przemyslaw Prusinkiewicz,et al.  Development models of herbaceous plants for computer imagery purposes , 1988, SIGGRAPH.

[2]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[3]  I. Good,et al.  Fractals: Form, Chance and Dimension , 1978 .

[4]  George A. Miller,et al.  Finite State Languages , 1958, Inf. Control..

[5]  R. Lindner,et al.  Algebraische Codierungstheorie : Theorie d. sequentiellen Codierungen , 1977 .

[6]  K. Falconer The geometry of fractal sets: Contents , 1985 .

[7]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[8]  A. Salomaa Lindner, R./Staiger, L., Algebraische Codierungstheorie, Theorie der sequentiellen Codierungen. Berlin, Akademie-Verlag 1977. 268 S., M 48,– , 1979 .

[9]  Ludwig Staiger,et al.  Finite-State omega-Languages , 1983, J. Comput. Syst. Sci..

[10]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[11]  Annegret Habel,et al.  Collages and patterns generated by hyperedge replacement , 1993 .

[12]  C. Bandt Self-similar sets 3. Constructions with sofic systems , 1989 .

[13]  Maurice Nivat,et al.  Adherences of Languages , 1980, J. Comput. Syst. Sci..

[14]  Ludwig Staiger,et al.  Automatentheoretische und automatenfreie Charakterisierungen topologischer Klassen regulärer Folgenmengen , 1974, J. Inf. Process. Cybern..

[15]  Karel Culik,et al.  Rational and Affine Expressions for Image Description , 1993, Discret. Appl. Math..

[16]  Alvy Ray Smith,et al.  Plants, fractals, and formal languages , 1984, SIGGRAPH.

[17]  Werner Kuich,et al.  On the Entropy of Context-Free Languages , 1970, Inf. Control..

[18]  Ludwig Staiger SummaryWe Quadtrees and the Hausdorr Dimension of Pictures , 1989 .

[19]  R. Daniel Mauldin,et al.  Hausdorff dimension in graph directed constructions , 1988 .

[20]  L. Staiger COMBINATORIAL PROPERTIES OF THE HAUSDORFF DIMENSION , 1989 .

[21]  Karel Culik,et al.  Automata-Theoretic Techniques for Image Generation and Compression , 1990, FSTTCS.

[22]  Karel Culik,et al.  Encoding Images as Words and Languages , 1993, Int. J. Algebra Comput..