Convergence analysis of some multiobjective evolutionary algorithms when discovering motifs
暂无分享,去创建一个
Miguel A. Vega-Rodríguez | David L. González-Álvarez | Alvaro Rubio-Largo | M. A. Vega-Rodríguez | Á. Rubio-Largo | D. L. González-Álvarez
[1] Kathleen Marchal,et al. A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling , 2001, Bioinform..
[2] Z. Weng,et al. Finding functional sequence elements by multiple local alignment. , 2004, Nucleic acids research.
[3] Qingfu Zhang,et al. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.
[4] Hossein Nezamabadi-pour,et al. BGSA: binary gravitational search algorithm , 2010, Natural Computing.
[5] Holger Karas,et al. TRANSFAC: a database on transcription factors and their DNA binding sites , 1996, Nucleic Acids Res..
[6] R. K. Ursem. Multi-objective Optimization using Evolutionary Algorithms , 2009 .
[7] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[8] G. Church,et al. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation , 1998, Nature Biotechnology.
[9] Miguel A. Vega-Rodríguez,et al. Applying a Multiobjective Gravitational Search Algorithm (MO-GSA) to Discover Motifs , 2011, IWANN.
[10] R. Guigó,et al. Evaluation of gene structure prediction programs. , 1996, Genomics.
[11] Dervis Karaboga,et al. AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .
[12] Saurabh Sinha,et al. YMF: a program for discovery of novel transcription factor binding sites by statistical overrepresentation , 2003, Nucleic Acids Res..
[13] William Stafford Noble,et al. Assessing computational tools for the discovery of transcription factor binding sites , 2005, Nature Biotechnology.
[14] Eleazar Eskin,et al. Finding composite regulatory patterns in DNA sequences , 2002, ISMB.
[15] Marco Laumanns,et al. SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .
[16] Charles Elkan,et al. Unsupervised learning of multiple motifs in biopolymers using expectation maximization , 1995, Mach. Learn..
[17] G. Stormo,et al. ANN-Spec: a method for discovering transcription factor binding sites with improved specificity. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.
[18] G. Fogel,et al. Discovery of sequence motifs related to coexpression of genes using evolutionary computation. , 2004, Nucleic acids research.
[19] Mikhail S. Gelfand,et al. A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length , 2005, Bioinform..
[20] W. J. Kent,et al. Environmentally Induced Foregut Remodeling by PHA-4/FoxA and DAF-12/NHR , 2004, Science.
[21] Miguel A. Vega-Rodríguez,et al. Comparing Multiobjective Artificial Bee Colony Adaptations for Discovering DNA Motifs , 2012, EvoBIO.
[22] Dipankar Dasgupta,et al. Motif discovery in upstream sequences of coordinately expressed genes , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..
[23] Miguel A. Vega-Rodríguez,et al. Solving the motif discovery problem by using Differential Evolution with Pareto Tournaments , 2010, IEEE Congress on Evolutionary Computation.
[24] Yuehui Chen,et al. Bacterial Foraging Optimization Algorithm Integrating Tabu Search for Motif Discovery , 2009, 2009 IEEE International Conference on Bioinformatics and Biomedicine.
[25] J. Collado-Vides,et al. Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. , 1998, Journal of molecular biology.
[26] P. D’haeseleer. What are DNA sequence motifs? , 2006, Nature Biotechnology.
[27] El-Ghazali Talbi,et al. Metaheuristics - From Design to Implementation , 2009 .
[28] Pavel A. Pevzner,et al. Combinatorial Approaches to Finding Subtle Signals in DNA Sequences , 2000, ISMB.
[29] Mireille Régnier,et al. Rare Events and Conditional Events on Random Strings , 2004, Discret. Math. Theor. Comput. Sci..
[30] Yuehui Chen,et al. Motif Discovery Using Evolutionary Algorithms , 2009, 2009 International Conference of Soft Computing and Pattern Recognition.
[31] Pierre Hansen,et al. Variable Neighborhood Search , 2018, Handbook of Heuristics.
[32] Xin-She Yang,et al. Firefly Algorithms for Multimodal Optimization , 2009, SAGA.
[33] Khaled Ghédira,et al. Estimating nadir point in multi-objective optimization using mobile reference points , 2010, IEEE Congress on Evolutionary Computation.
[34] Rainer Storn,et al. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..
[35] Khaled Ghédira,et al. The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making , 2010, IEEE Transactions on Evolutionary Computation.
[36] Miguel A. Vega-Rodríguez,et al. Finding Motifs in DNA Sequences Applying a Multiobjective Artificial Bee Colony (MOABC) Algorithm , 2011, EvoBio.
[37] Khaled Rasheed,et al. MDGA: motif discovery using a genetic algorithm , 2005, GECCO '05.
[38] Miguel A. Vega-Rodríguez,et al. Predicting DNA Motifs by Using Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).
[39] Rong-Ming Chen,et al. FMGA: finding motifs by genetic algorithm , 2004, Proceedings. Fourth IEEE Symposium on Bioinformatics and Bioengineering.
[40] Hossein Nezamabadi-pour,et al. GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..
[41] J. Collado-Vides,et al. Discovering regulatory elements in non-coding sequences by analysis of spaced dyads. , 2000, Nucleic acids research.
[42] Nicola Beume,et al. Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.
[43] David J. Sheskin,et al. Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .
[44] Eckart Zitzler,et al. Indicator-Based Selection in Multiobjective Search , 2004, PPSN.
[45] Mehmet Kaya,et al. MOGAMOD: Multi-objective genetic algorithm for motif discovery , 2009, Expert Syst. Appl..
[46] Miguel A. Vega-Rodríguez,et al. Comparing multiobjective swarm intelligence metaheuristics for DNA motif discovery , 2013, Eng. Appl. Artif. Intell..
[47] Gary B. Fogel,et al. Evolutionary computation for discovery of composite transcription factor binding sites , 2008, Nucleic acids research.
[48] Janez Brest,et al. An improved self-adaptive differential evolution algorithm in single objective constrained real-parameter optimization , 2010, IEEE Congress on Evolutionary Computation.
[49] Yang Xin-She. マルチモーダル最適化のためのFireflyアルゴリズム | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2009 .
[50] Gary D. Stormo,et al. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences , 1999, Bioinform..
[51] Leping Li,et al. GADEM: A Genetic Algorithm Guided Formation of Spaced Dyads Coupled with an EM Algorithm for Motif Discovery , 2009, J. Comput. Biol..
[52] Miguel A. Vega-Rodríguez,et al. A Multiobjective Variable Neighborhood Search for Solving the Motif Discovery Problem , 2010, SOCO.
[53] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[54] Graziano Pesole,et al. An algorithm for finding signals of unknown length in DNA sequences , 2001, ISMB.
[55] Andrew M. Tyrrell,et al. Regulatory Motif Discovery Using a Population Clustering Evolutionary Algorithm , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[56] G. Crooks,et al. WebLogo: a sequence logo generator. , 2004, Genome research.