Feeling Sensors' Pulse: Accurate Noise Quantification in Participatory Sensing Network

In the participatory sensing network, the sensor noise dominates the quality of sensing data as well as the processing efficiency. Previous works focus on evaluating sensing accuracy with expectations, and fails to quantify the sensor noise with variance estimations, which will inevitably suffer from the dynamics and the incompleteness of the sensing data. In this paper, we propose FSP (Feeling Sensors' Pulse) method, which quantifies the sensor noise using the confidence interval. Specifically, we first use EM (Expectation Maximization) based iterative estimation algorithm to compute the maximum likelihood estimation (MLE) of sensor noise. Second, on the basis of these estimations, we leverage the asymptotic normality of MLE and the Fisher information to compute the confidence interval. The extensive simulations show that, FSP can achieve 90% success rate where the true values of sensor noise fall into the 95% confidence interval, at the cost of the polynomial time complexity only.

[1]  Guobin Shen,et al.  Walkie-Markie: Indoor Pathway Mapping Made Easy , 2013, NSDI.

[2]  Miodrag Potkonjak,et al.  Model-based calibration for sensor networks , 2003, Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498).

[3]  David K. Y. Yau,et al.  Accurate localization of low-level radioactive source under noise and measurement errors , 2008, SenSys '08.

[4]  Xenofon D. Koutsoukos,et al.  Air Quality Monitoring with SensorMap , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[5]  Xi Fang,et al.  Crowdsourcing to smartphones: incentive mechanism design for mobile phone sensing , 2012, Mobicom '12.

[6]  M. Hansen,et al.  Participatory Sensing , 2019, Internet of Things.

[7]  Matematik Standard Normal Table , 2010 .

[8]  David K. Y. Yau,et al.  Identification of low-level point radioactive sources using a sensor network , 2010, TOSN.

[9]  Yunhao Liu,et al.  PassFit: Participatory Sensing and Filtering for Identifying Truthful Urban Pollution Sources , 2013, IEEE Sensors Journal.

[10]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[11]  Emiliano Miluzzo,et al.  A survey of mobile phone sensing , 2010, IEEE Communications Magazine.

[12]  Zhaohui Yuan,et al.  Mobile Scheduling for Spatiotemporal Detection in Wireless Sensor Networks , 2010, IEEE Transactions on Parallel and Distributed Systems.

[13]  Deborah Estrin,et al.  PEIR, the personal environmental impact report, as a platform for participatory sensing systems research , 2009, MobiSys '09.

[14]  Marco Gruteser,et al.  ParkNet: drive-by sensing of road-side parking statistics , 2010, MobiSys '10.

[15]  Wen Hu,et al.  Ear-phone: an end-to-end participatory urban noise mapping system , 2010, IPSN '10.

[16]  R. F.,et al.  Mathematical Statistics , 1944, Nature.

[17]  Li Shang,et al.  Collaborative calibration and sensor placement for mobile sensor networks , 2012, 2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN).

[18]  Charu C. Aggarwal,et al.  On scalability and robustness limitations of real and asymptotic confidence bounds in social sensing , 2012, 2012 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON).

[19]  Allison Woodruff,et al.  Common Sense Community: Scaffolding Mobile Sensing and Analysis for Novice Users , 2010, Pervasive.

[20]  Andreas Krause,et al.  The next big one: Detecting earthquakes and other rare events from community-based sensors , 2011, Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks.

[21]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[22]  Robert L. Wolpert,et al.  Statistical Inference , 2019, Encyclopedia of Social Network Analysis and Mining.

[23]  Ramachandran Ramjee,et al.  Nericell: rich monitoring of road and traffic conditions using mobile smartphones , 2008, SenSys '08.

[24]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[25]  Emiliano Miluzzo,et al.  The BikeNet mobile sensing system for cyclist experience mapping , 2007, SenSys '07.

[26]  Gang Wang,et al.  Practical conflict graphs for dynamic spectrum distribution , 2013, SIGMETRICS '13.

[27]  S. Sitharama Iyengar,et al.  Identification of low-level point radioactive sources using a sensor network , 2010, TOSN.

[28]  Fan Ye,et al.  Mobile crowdsensing: current state and future challenges , 2011, IEEE Communications Magazine.

[29]  Wazir Zada Khan,et al.  Mobile Phone Sensing Systems: A Survey , 2013, IEEE Communications Surveys & Tutorials.

[30]  Charu C. Aggarwal,et al.  On Credibility Estimation Tradeoffs in Assured Social Sensing , 2013, IEEE Journal on Selected Areas in Communications.

[31]  Jorma Rissanen,et al.  Fisher information and stochastic complexity , 1996, IEEE Trans. Inf. Theory.

[32]  Yang Zhang,et al.  CarTel: a distributed mobile sensor computing system , 2006, SenSys '06.