Bias-Controlled Spectral Response in GaN/AlN Single-Nanowire Ultraviolet Photodetectors.

We present a study of GaN single-nanowire ultraviolet photodetectors with an embedded GaN/AlN superlattice. The heterostructure dimensions and doping profile were designed in such a way that the application of positive or negative bias leads to an enhancement of the collection of photogenerated carriers from the GaN/AlN superlattice or from the GaN base, respectively, as confirmed by electron beam-induced current measurements. The devices display enhanced response in the ultraviolet A (≈ 330-360 nm)/B (≈ 280-330 nm) spectral windows under positive/negative bias. The result is explained by correlation of the photocurrent measurements with scanning transmission electron microscopy observations of the same single nanowire and semiclassical simulations of the strain and band structure in one and three dimensions.

[1]  J. Arbiol,et al.  Carrier confinement in GaN/Al x Ga 1-x N nanowire heterostructures (0 , 2011, 1109.3394.

[2]  Pengyu Fan,et al.  Resonant germanium nanoantenna photodetectors. , 2010, Nano letters.

[3]  M. Eickhoff,et al.  Germanium doping of self-assembled GaN nanowires grown by plasma-assisted molecular beam epitaxy , 2013 .

[4]  P. Krogstrup,et al.  Single-nanowire solar cells beyond the Shockley-Queisser limit , 2013, 1301.1068.

[5]  Esther Baumann,et al.  GaN/AlN short-period superlattices for intersubband optoelectronics: A systematic study of their epitaxial growth, design, and performance , 2008 .

[6]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[7]  Cesare Soci,et al.  Silicon nanowire detectors showing phototransistive gain , 2008 .

[8]  Young Joon Hong,et al.  Photocatalysis using GaN nanowires. , 2008, ACS nano.

[9]  Martin Eickhoff,et al.  Bias-enhanced optical pH response of group III-nitride nanowires. , 2012, Nano letters.

[10]  Wei Lu,et al.  Nanowire Transistor Performance Limits and Applications , 2008, IEEE Transactions on Electron Devices.

[11]  Jeremy N. Munday,et al.  The generalized Shockley-Queisser limit for nanostructured solar cells , 2015, Scientific Reports.

[12]  Rainer G. Ulbrich,et al.  Atomic and electronic structure of the nonpolar GaN ( 1 1 ¯ 00 ) surface , 2009 .

[13]  Meiyong Liao,et al.  Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors. , 2011, Small.

[14]  C. Soci,et al.  ZnO nanowire UV photodetectors with high internal gain. , 2007, Nano letters.

[15]  M. Eickhoff,et al.  Electrical transport properties of Ge-doped GaN nanowires , 2015, Nanotechnology.

[16]  Eva Monroy,et al.  Single GaN-Based Nanowires for Photodetection and Sensing Applications , 2013 .

[17]  Val Zwiller,et al.  Selective excitation and detection of spin states in a single nanowire quantum dot. , 2009, Nano letters.

[18]  Z. Mi,et al.  One-step overall water splitting under visible light using multiband InGaN/GaN nanowire heterostructures. , 2013, ACS nano.

[19]  Thomas Richter,et al.  Size-dependent photoconductivity in MBE-grown GaN-nanowires. , 2005, Nano letters.

[20]  E. Robin,et al.  Si Donor Incorporation in GaN Nanowires. , 2015, Nano letters.

[21]  F. Julien,et al.  Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire. , 2010, Nano letters.

[22]  N. Dasgupta,et al.  Core-Shell CdS-Cu₂S Nanorod Array Solar Cells. , 2015, Nano letters.

[23]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[24]  Chun-Yang Lu,et al.  Molecule-modulated photoconductivity and gain-amplified selective gas sensing in polar GaN nanowires , 2009 .

[25]  P. Vogl,et al.  nextnano: General Purpose 3-D Simulations , 2007, IEEE Transactions on Electron Devices.

[26]  K. H. Chen,et al.  Photoconduction efficiencies and dynamics in GaN nanowires grown by chemical vapor deposition and molecular beam epitaxy: A comparison study , 2012 .

[27]  P. Reddy,et al.  The effect of polarity and surface states on the Fermi level at III-nitride surfaces , 2014 .

[28]  Haibiao Chen,et al.  CdS-Nanowires Flexible Photo-detector with Ag-Nanowires Electrode Based on Non-transfer Process , 2016, Scientific Reports.

[29]  Yong Ding,et al.  Photoconductive enhancement of single ZnO nanowire through localized Schottky effects. , 2010, Optics express.

[30]  Steven M. George,et al.  Steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular beam epitaxy , 2010 .

[31]  M. Eickhoff,et al.  UV Photosensing Characteristics of Nanowire-Based GaN/AlN Superlattices. , 2016, Nano letters.

[32]  J. Bläsing,et al.  Germanium – the superior dopant in n‐type GaN , 2015 .

[33]  Chao Liu,et al.  Ultrafast, superhigh gain visible-blind UV detector and optical logic gates based on nonpolar a-axial GaN nanowire. , 2014, Nanoscale.

[34]  E. Monroy,et al.  Room-temperature photodetection dynamics of single GaN nanowires. , 2012, Nano letters.

[35]  O. Brandt,et al.  Monitoring the formation of nanowires by line-of-sight quadrupole mass spectrometry: a comprehensive description of the temporal evolution of GaN nanowire ensembles. , 2015, Nano letters.

[36]  Grzegorz Grzela,et al.  Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires. , 2011, ACS nano.

[37]  Environmental sensitivity of n-i-n and undoped single GaN nanowire photodetectors , 2012, 1212.1591.

[38]  H. Eisele,et al.  Hidden surface states at non-polar GaN (101¯0) facets: Intrinsic pinning of nanowires , 2013 .

[39]  P. Radovanovic,et al.  Tuning manganese dopant spin interactions in single GaN nanowires at room temperature. , 2011, ACS nano.

[40]  Y. Arakawa,et al.  Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. , 2014, Nano letters.

[41]  M. Mori,et al.  Growth of Self-Organized GaN Nanostructures on Al2O3(0001) by RF-Radical Source Molecular Beam Epitaxy , 1997 .

[42]  R. Beresford,et al.  The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(1 1 1) , 1998 .

[43]  M. Eickhoff,et al.  Long-lived excitons in GaN/AlN nanowire heterostructures , 2014, 1412.7720.

[44]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[45]  Benjamin Klein,et al.  Studies of photoconductivity and field effect transistor behavior in examining drift mobility, surface depletion, and transient effects in Si-doped GaN nanowires in vacuum and air , 2013 .

[46]  P. Dapkus,et al.  Large area, low capacitance, GaAs nanowire photodetector with a transparent Schottky collecting junction , 2013 .

[47]  E. Monroy,et al.  Correlation of polarity and crystal structure with optoelectronic and transport properties of GaN/AlN/GaN nanowire sensors. , 2012, Nano letters.

[48]  Yong-Jun Cho,et al.  Diameter-dependent internal gain in ohmic Ge nanowire photodetectors. , 2010, Nano letters.

[49]  S. T. Lee,et al.  Single-crystalline ZnTe nanowires for application as high-performance green/ultraviolet photodetector. , 2011, Optics express.

[50]  J. M. Gray,et al.  On-chip optical interconnects made with gallium nitride nanowires. , 2013, Nano letters.

[51]  Hyunjin Kim,et al.  Si nanowire metal–insulator–semiconductor photodetectors as efficient light harvesters , 2010, Nanotechnology.

[52]  Peidong Yang,et al.  Semiconductor nanowires for energy conversion , 2010 .

[53]  GaAs/AlGaAs nanowire photodetector. , 2014, Nano letters.

[54]  F. Besenbacher,et al.  Optical regulation of protein adsorption and cell adhesion by photoresponsive GaN nanowires. , 2013, ACS applied materials & interfaces.

[55]  F. Julien,et al.  Systematic experimental and theoretical investigation of intersubband absorption in GaN/AlN quantum wells , 2006 .

[56]  Gert Cauwenberghs,et al.  Towards high-resolution retinal prostheses with direct optical addressing and inductive telemetry , 2016, Journal of neural engineering.

[57]  E. Monroy,et al.  Wide-bandgap semiconductor ultraviolet photodetectors , 2003 .