Interaction models for functional regression

A functional regression model with a scalar response and multiple functional predictors is proposed that accommodates two-way interactions in addition to their main effects. The proposed estimation procedure models the main effects using penalized regression splines, and the interaction effect by a tensor product basis. Extensions to generalized linear models and data observed on sparse grids or with measurement error are presented. A hypothesis testing procedure for the functional interaction effect is described. The proposed method can be easily implemented through existing software. Numerical studies show that fitting an additive model in the presence of interaction leads to both poor estimation performance and lost prediction power, while fitting an interaction model where there is in fact no interaction leads to negligible losses. The methodology is illustrated on the AneuRisk65 study data.

[1]  Ciprian M Crainiceanu,et al.  Penalized Functional Regression , 2011, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[2]  P. Bloomfield,et al.  A Time Series Approach To Numerical Differentiation , 1974 .

[3]  Ana-Maria Staicu,et al.  Global Analysis of Methylation Profiles From High Resolution CpG Data , 2015, Genetic epidemiology.

[4]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[5]  Ana-Maria Staicu,et al.  Penalized function-on-function regression , 2015, Comput. Stat..

[6]  S. Wood On p-values for smooth components of an extended generalized additive model , 2013 .

[7]  Gareth M. James,et al.  Functional Adaptive Model Estimation , 2005 .

[8]  A. Veneziani,et al.  A Case Study in Exploratory Functional Data Analysis: Geometrical Features of the Internal Carotid Artery , 2009 .

[9]  Gareth M. James Generalized linear models with functional predictors , 2002 .

[10]  Mathew W. McLean,et al.  Restricted likelihood ratio tests for linearity in scalar-on-function regression , 2013, Stat. Comput..

[11]  Philippe Vieu,et al.  Partial linear modelling with multi-functional covariates , 2015, Comput. Stat..

[12]  S. Wood,et al.  Coverage Properties of Confidence Intervals for Generalized Additive Model Components , 2012 .

[13]  Brian S. Caffo,et al.  Multilevel functional principal component analysis , 2009 .

[14]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[15]  P. Hall,et al.  Single and multiple index functional regression models with nonparametric link , 2011, 1211.5018.

[16]  Aldo Goia,et al.  A partitioned Single Functional Index Model , 2015, Comput. Stat..

[17]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[18]  Arnab Maity,et al.  Partially Linear Varying Coefficient Models Stratified by a Functional Covariate. , 2012, Statistics & probability letters.

[19]  Heng Lian,et al.  Functional partial linear model , 2009, Journal of Nonparametric Statistics.

[20]  Ana-Maria Staicu,et al.  Analysis of AneuRisk65 data: Classification and curve registration , 2014 .

[21]  Anuj Srivastava,et al.  Shape Analysis of Elastic Curves in Euclidean Spaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Gareth M. James,et al.  Functional additive regression , 2015, 1510.04064.

[23]  Philippe Vieu,et al.  Semi-functional partial linear regression , 2006 .

[24]  H. Muller,et al.  Generalized functional linear models , 2005, math/0505638.

[25]  Aldo Goia,et al.  A functional linear model for time series prediction with exogenous variables , 2012 .

[26]  J. Friedman,et al.  A Statistical View of Some Chemometrics Regression Tools , 1993 .

[27]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[28]  A. Veneziani,et al.  Efficient estimation of 3-dimensional centerlines of inner carotid arteries and their curvature functions by free knot regression splines , 2007 .

[29]  J. Ramsay,et al.  Some Tools for Functional Data Analysis , 1991 .

[30]  Philippe Vieu,et al.  Nonparametric time series prediction: A semi-functional partial linear modeling , 2008 .

[31]  H. Müller Nonparametric regression analysis of longitudinal data , 1988 .

[32]  G. Wahba A Comparison of GCV and GML for Choosing the Smoothing Parameter in the Generalized Spline Smoothing Problem , 1985 .

[33]  S. Wood Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models , 2011 .

[34]  Daniel Gervini Analysis of AneuRisk65 data: warped logistic discrimination , 2013 .

[35]  Frédéric Ferraty,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[36]  Frédéric Ferraty,et al.  Functional projection pursuit regression , 2013 .

[37]  H. Müller,et al.  Shrinkage Estimation for Functional Principal Component Scores with Application to the Population Kinetics of Plasma Folate , 2003, Biometrics.

[38]  Douglas Nychka,et al.  Bayesian Confidence Intervals for Smoothing Splines , 1988 .

[39]  L. Antiga,et al.  Geometry of the Internal Carotid Artery and Recurrent Patterns in Location, Orientation, and Rupture Status of Lateral Aneurysms: An Image-Based Computational Study , 2011, Neurosurgery.

[40]  Joel L. Horowitz,et al.  Methodology and convergence rates for functional linear regression , 2007, 0708.0466.

[41]  Frédéric Ferraty,et al.  Additive prediction and boosting for functional data , 2009, Comput. Stat. Data Anal..

[42]  Frédéric Ferraty,et al.  The Functional Nonparametric Model and Application to Spectrometric Data , 2002, Comput. Stat..

[43]  H. Müller,et al.  Functional quadratic regression , 2010 .

[44]  Mathew W. McLean,et al.  Journal of Computational and Graphical Statistics Functional Generalized Additive Models Functional Generalized Additive Models Accepted Manuscript Accepted Manuscript , 2022 .

[45]  D. Ruppert Selecting the Number of Knots for Penalized Splines , 2002 .

[46]  J Gertheiss,et al.  Variable selection in generalized functional linear models , 2013, Stat.

[47]  G. Wahba Bayesian "Confidence Intervals" for the Cross-validated Smoothing Spline , 1983 .

[48]  Enea G. Bongiorno,et al.  Contributions in Infinite-Dimensional Statistics and Related Topics , 2014 .

[49]  Paul H. C. Eilers,et al.  Multidimensional Penalized Signal Regression , 2005, Technometrics.

[50]  P. Sarda,et al.  SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .

[51]  Jane-ling Wang Nonparametric Regression Analysis of Longitudinal Data , 2005 .

[52]  R. Todd Ogden,et al.  Smoothing parameter selection for a class of semiparametric linear models , 2009 .

[53]  S. Wood Generalized Additive Models: An Introduction with R , 2006 .

[54]  Anuj Srivastava,et al.  Analysis of AneuRisk65 data: Elastic shape registration of curves , 2014 .

[55]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[56]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[57]  Anestis Antoniadis,et al.  Dimension reduction in functional regression with applications , 2006, Comput. Stat. Data Anal..

[58]  Simone Vantini,et al.  Analysis of AneuRisk65 data: $k$-mean alignment , 2014 .

[59]  Christopher K. Wikle,et al.  Ecological Prediction With Nonlinear Multivariate Time-Frequency Functional Data Models , 2013 .

[60]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[61]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[62]  Piotr Kokoszka,et al.  Inference for Functional Data with Applications , 2012 .

[63]  R. Tibshirani,et al.  Generalized additive models for medical research , 1986, Statistical methods in medical research.

[64]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[65]  Laurent Delsol No effect tests in regression on functional variable and some applications to spectrometric studies , 2013, Comput. Stat..

[66]  Nadia L. Kudraszow,et al.  Uniform consistency of kNN regressors for functional variables , 2013 .

[67]  M. Kendall Theoretical Statistics , 1956, Nature.

[68]  Simone Vantini,et al.  Rejoinder: Analysis of AneuRisk65 data , 2014 .

[69]  Wen Cheng,et al.  Analysis of AneuRisk65 data: Internal carotid artery shape analysis , 2014 .

[70]  Min Chen,et al.  Spline estimators for semi-functional linear model , 2012 .