Anisotropic O vacancy formation and diffusion in LaMnO3

Anisotropy effects in solid oxide fuel cells are typically not considered because of high operating temperatures. Focusing on the prototypical perovskite LaMnO3, we apply first-principles calculations to demonstrate that this approximation is no longer valid when the operating temperature is reduced and discuss the consequences for the material properties. In addition, we show that strain and Sr doping can be used to further increase the anisotropy. Tensile strain promotes both the O vacancy formation and diffusion in pristine and Sr doped LaMnO3, while Sr doping enhances the O vacancy formation. Both in LaMnO3 and La0.75Sr0.25MnO3 the O diffusion is found to be favorable in the [011] and [01] directions.

[1]  W. Weber,et al.  Strained Ionic Interfaces: Effect on Oxygen Diffusivity from Atomistic Simulations , 2014 .

[2]  Zhenbin Wang,et al.  Oxygen reduction and transport on the La1−xSrxCo1−yFeyO3−δ cathode in solid oxide fuel cells: a first-principles study , 2013 .

[3]  R. D. De Souza,et al.  Activation volume tensor for oxygen-vacancy migration in strained CeO2 electrolytes. , 2013, Physical review letters.

[4]  B. Yildiz,et al.  Tensile Lattice Strain Accelerates Oxygen Surface Exchange and Diffusion in La1–xSrxCoO3−δ Thin Films , 2013, ACS nano.

[5]  T. Grande,et al.  Strain-controlled oxygen vacancy formation and ordering in CaMnO3 , 2013, 1303.4749.

[6]  M. Shen,et al.  Half-metallic ferromagnetism via the interface electronic reconstruction in LaAlO3/SrMnO3 nanosheet superlattices. , 2012, ACS nano.

[7]  B. Yildiz,et al.  Mechanism for enhanced oxygen reduction kinetics at the (La,Sr)CoO3−δ/(La,Sr)2CoO4+δ hetero-interface , 2012 .

[8]  D. Morgan,et al.  Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells , 2012 .

[9]  Shinji Yamamoto,et al.  Crystal Structure, Oxygen Deficiency, and Oxygen Diffusion Path of Perovskite-Type Lanthanum Cobaltites La0.4Ba0.6CoO3−δ and La0.6Sr0.4CoO3−δ , 2012 .

[10]  S. Pennycook,et al.  Tailoring Interface Structure in Highly Strained YSZ/STO Heterostructures , 2011, Advanced materials.

[11]  B. Yildiz,et al.  Enhanced one dimensional mobility of oxygen on strained LaCoO3(001) surface , 2011 .

[12]  E. Wachsman,et al.  Lowering the Temperature of Solid Oxide Fuel Cells , 2011, Science.

[13]  Y. Shao-horn,et al.  Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxide fuel cells , 2011 .

[14]  S. Pennycook,et al.  Strain-driven oxygen deficiency in self-assembled, nanostructured, composite oxide films. , 2011, ACS nano.

[15]  M. Lin,et al.  Computational investigation of O2 reduction and diffusion on 25% Sr-doped LaMnO3 cathodes in solid oxide fuel cells. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[16]  Ming Liu,et al.  Epitaxial Strain-Induced Chemical Ordering in La0.5Sr0.5CoO3−δ Films on SrTiO3 , 2011 .

[17]  Craig A. J. Fisher,et al.  Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. , 2010, Chemical Society reviews.

[18]  D. Leonard,et al.  Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells , 2010 .

[19]  Bilge Yildiz,et al.  Competing strain effects in reactivity of LaCoO 3 with oxygen , 2010 .

[20]  Chunwen Sun,et al.  Cathode materials for solid oxide fuel cells: a review , 2010 .

[21]  H. Kageyama,et al.  Anisotropic oxygen diffusion at low temperature in perovskite-structure iron oxides. , 2010, Nature chemistry.

[22]  Meilin Liu,et al.  Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations , 2010 .

[23]  Allan J. Jacobson,et al.  Materials for Solid Oxide Fuel Cells , 2010 .

[24]  E. Traversa,et al.  Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells , 2010, Science and technology of advanced materials.

[25]  A. Chroneos,et al.  Anisotropic oxygen diffusion in tetragonal La2NiO4+δ: molecular dynamics calculations , 2010 .

[26]  Dane Morgan,et al.  Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes , 2009 .

[27]  Meilin Liu,et al.  Prediction of O2 Dissociation Kinetics on LaMnO3-Based Cathode Materials for Solid Oxide Fuel Cells , 2009 .

[28]  J. Janek,et al.  Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films--theoretical considerations and experimental studies. , 2009, Physical chemistry chemical physics : PCCP.

[29]  N. Ming,et al.  Interplay between external strain and oxygen vacancies on a rutile TiO2(110) Surface. , 2008, Physical review letters.

[30]  S J Pennycook,et al.  Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures , 2008, Science.

[31]  S. Ogale,et al.  Stress relaxation of La1/2Sr1/2MnO3 and La2/3Ca1/3MnO3 at solid oxide fuel cell interfaces , 2008 .

[32]  J. Kilner,et al.  Anisotropic oxygen diffusion properties in epitaxial thin films of La2NiO4+δ , 2008 .

[33]  K. Knight,et al.  Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. , 2007, Nature materials.

[34]  Meilin Liu,et al.  Computational study on the catalytic mechanism of oxygen reduction on La(0.5)Sr(0.5)MnO(3) in solid oxide fuel cells. , 2007, Angewandte Chemie.

[35]  M. Lerch,et al.  In-situ investigation of oxygen diffusion in Sr, Mg-doped LaGaO3 superionic conductors with a simultaneously applied electric field , 2005 .

[36]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[37]  Y. Miyazaki,et al.  Conduction path and disorder in the fast oxide-ion conductor (La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)O2.8 , 2003 .

[38]  R. Ferrando,et al.  Collective and single particle diffusion on surfaces , 2002 .

[39]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[40]  J. Goodenough,et al.  Paramagnetic phase in single-crystal LaMnO 3 , 1999 .

[41]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[42]  J. Goodenough,et al.  LaCoO{sub 3} revisited , 1995 .

[43]  K. Yoon,et al.  Enhanced oxygen diffusion in epitaxial lanthanum–strontium–cobaltite thin film cathodes for micro solid oxide fuel cells , 2013 .

[44]  M. Islam Ionic transport in ABO3 perovskite oxides: a computer modelling tour , 2000 .