Efficient transient noise analysis in circuit simulation

Transient noise analysis means time domain simulation of noisy electronic circuits. We consider mathematical models where the noise is taken into account by means of sources of Gaussian white noise that are added to the deterministic network equations, leading to systems of stochastic differential algebraic equations (SDAEs). A crucial property of the arising SDAEs is the large number of small noise sources that are included. As efficient means of their integration we discuss adaptive linear multi-step methods, in particular stochastic analogues of the trapezoidal rule and the two-step backward differentiation formula, together with a new step-size control strategy. Test results including real-life problems illustrate the performance of the presented methods.

[1]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[2]  J. Dupacová,et al.  Scenario reduction in stochastic programming: An approach using probability metrics , 2000 .

[3]  C. Tischendorf,et al.  Structural analysis of electric circuits and consequences for MNA , 2000 .

[4]  Ernst Hairer,et al.  The numerical solution of differential-algebraic systems by Runge-Kutta methods , 1989 .

[5]  Michael V. Tretyakov,et al.  Numerical methods for SDEs with small noise , 2004 .

[6]  Klaus Ritter,et al.  Optimal approximation of stochastic differential equations by adaptive step-size control , 2000, Math. Comput..

[7]  R. Bokor Stochastically stable one-step approximations of solutions of stochastic ordinary differential equations , 2003 .

[8]  Evelyn Buckwar,et al.  NUMERICAL ANALYSIS OF EXPLICIT ONE-STEP METHODS FOR STOCHASTIC DELAY DIFFERENTIAL EQUATIONS , 1975 .

[9]  P. Glasserman,et al.  Pricing American Options by Simulation Using a Stochastic Mesh with Optimized Weights , 2000 .

[10]  Stefan Schäffler,et al.  Transient Noise Simulation: Modeling and Simulation of 1/f -Noise , 2003 .

[11]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[12]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[13]  Susanne Mauthner,et al.  Step size control in the numerical solution of stochastic differential equations , 1998 .

[14]  L. Shampine,et al.  Numerical Solution of Ordinary Differential Equations. , 1995 .

[15]  Evelyn Buckwar,et al.  Improved linear multi-step methods for stochastic ordinary differential equations , 2007 .

[16]  Peter Mathé,et al.  On quasi-Monte Carlo simulation of stochastic differential equations , 1997, Math. Comput..

[17]  Diana Estévez Schwarz,et al.  Consistent initialization for index-2 differential algebraic equations and its application to circuit simulation , 2000 .

[18]  Harbir Lamba,et al.  An adaptive timestepping algorithm for stochastic differential equations , 2003 .

[19]  G. Denk Circuit Simulation for Nanoelectronics , 2006 .

[20]  C. Givens,et al.  A class of Wasserstein metrics for probability distributions. , 1984 .

[21]  Gustaf Söderlind,et al.  Digital filters in adaptive time-stepping , 2003, TOMS.

[22]  G. Mil’shtein A Theorem on the Order of Convergence of Mean-Square Approximations of Solutions of Systems of Stochastic Differential Equations , 1988 .

[23]  Renate Winkler,et al.  Stochastic oscillations in circuit simulation , 2007 .

[24]  Werner Römisch,et al.  Scenario Reduction Algorithms in Stochastic Programming , 2003, Comput. Optim. Appl..

[25]  Ewa Weinmüller,et al.  Local error estimates for moderately smooth problems: Part I – ODEs and DAEs , 2007 .

[26]  Matthias Gelbrich,et al.  Simultaneous time and chance discretization for stochastic differential equations , 1995 .

[27]  Thorsten Sickenberger,et al.  Mean-square convergence of stochastic multi-step methods with variable step-size , 2008 .

[28]  Jim Freeman Probability Metrics and the Stability of Stochastic Models , 1991 .

[29]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[30]  G. Denk,et al.  Numerical solution of stochastic differential-algebraic equations with applications to transient noise simulation of microelectronic circuits , 1998 .

[31]  Albert J. Kinderman,et al.  Computer Generation of Random Variables Using the Ratio of Uniform Deviates , 1977, TOMS.

[32]  D. Williams STOCHASTIC DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS , 1976 .

[33]  G. Maruyama Continuous Markov processes and stochastic equations , 1955 .

[34]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .

[35]  G. Milstein Numerical Integration of Stochastic Differential Equations , 1994 .

[36]  W. Schottky Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern , 1918 .

[37]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[38]  Renate Winkler,et al.  Adaptive Methods for Transient Noise Analysis , 2007 .

[39]  Evelyn Buckwar,et al.  Multistep methods for SDEs and their application to problems with small noise , 2006, SIAM J. Numer. Anal..

[40]  G. Denk Transient Noise Analysis in Circuit Simulation , 2002 .

[41]  G. N. Milstein,et al.  Mean-Square Numerical Methods for Stochastic Differential Equations with Small Noises , 1997, SIAM J. Sci. Comput..

[42]  R. D. Richtmyer,et al.  Survey of the stability of linear finite difference equations , 1956 .

[43]  Michael Günther,et al.  CAD based electric circuit modeling in industry. Pt. 1: Mathematical structure and index of network equations , 1997 .

[44]  C. Penski,et al.  A new numerical method for SDEs and its application in circuit simulation , 2000 .

[45]  Jitka Dupacová,et al.  Scenario reduction in stochastic programming , 2003, Math. Program..

[46]  Kevin Burrage,et al.  A Variable Stepsize Implementation for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[47]  Roswitha März,et al.  EXTRA-ordinary Differential Equations: Attempts to an Analysis of Differential-algebraic Systems , 1998 .

[48]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[49]  Werner Römisch,et al.  Stochastic DAEs in Circuit Simulation , 2003 .

[50]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[51]  Philip Protter,et al.  A short history of stochastic integration and mathematical finance the early years, 1880-1970 , 2004 .

[52]  Steffen Voigtmann,et al.  General Linear Methods for Integrated Circuit Design , 2006 .

[53]  Andreas Bartel,et al.  Scientific Computing in Electrical Engineering , 2001 .

[54]  X. Mao,et al.  Stochastic Differential Equations and Applications , 1998 .

[55]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[56]  Oliver Schein Stochastic differential algebraic equations in circuit simulation , 1999 .

[57]  K. Gustafsson,et al.  API stepsize control for the numerical solution of ordinary differential equations , 1988 .

[58]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[59]  Per Grove Thomsen,et al.  Numerical Solution of Differential Algebraic Equations , 1999 .

[60]  S. Graf,et al.  Foundations of Quantization for Probability Distributions , 2000 .

[61]  Inmaculada Higueras,et al.  Differential algebraic equations with properly stated leading terms , 2004 .

[62]  Werner Römisch,et al.  Stepsize Control for Mean-Square Numerical Methods for Stochastic Differential Equations with Small Noise , 2006, SIAM J. Sci. Comput..

[63]  Alper Demir,et al.  Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems , 1997 .

[64]  Pierre L'Ecuyer,et al.  Implementing a random number package with splitting facilities , 1991, TOMS.

[65]  R. Brown XXVII. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies , 1828 .

[66]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[67]  R. Winkler Stochastic differential algebraic equations of index 1 and applications in circuit simulation , 2003 .

[68]  ter Ejw Jan Maten,et al.  Digital linear control theory applied to automatic stepsize control in electrical circuit simulation , 2006 .

[69]  Jan Sieber,et al.  Local error control for general index-1 and index-2 differential-algebraic equations , 1997 .

[70]  Georg Denk,et al.  Modelling and simulation of transient noise in circuit simulation , 2007 .

[71]  G. Pagès,et al.  A QUANTIZATION TREE METHOD FOR PRICING AND HEDGING MULTIDIMENSIONAL AMERICAN OPTIONS , 2005 .

[72]  Renate Winkler Stochastic Differential Algebraic Equations in Transient Noise Analysis , 2006 .

[73]  Ricardo Riaza,et al.  On linear differential-algebraic equations with properly stated leading term , 2004 .

[74]  Susanne Mauthner Schrittweitensteuerung bei der numerischen Lösung stochastischer Differentialgleichungen , 1999 .

[75]  Hans Christian Öttinger,et al.  Stochastic Processes in Polymeric Fluids , 1996 .

[76]  J. Gentle Random number generation and Monte Carlo methods , 1998 .

[77]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[78]  Uwe Feldmann,et al.  Finding Beneficial DAE Structures in Circuit Simulation , 2003 .

[79]  Marc Tiebout A Fully Integrated 1.3GHz VCO for GSM in 0.25μm Standard CMOS with a Phasenoise of -- 142dBc/Hz at 3MHz Offset , 2000, 2000 30th European Microwave Conference.