Bacteria love our sugars: Interaction between soluble lectins and human fucosylated glycans, structures, thermodynamics and design of competing glycocompounds

[1]  S. Diggle,et al.  Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB. , 2008, Chemistry & biology.

[2]  D. Mack,et al.  Inhalation with Fucose and Galactose for Treatment of Pseudomonas Aeruginosa in Cystic Fibrosis Patients , 2008, International journal of medical sciences.

[3]  A. Imberty,et al.  Monovalent and bivalent N-fucosyl amides as high affinity ligands for Pseudomonas aeruginosa PA-IIL lectin. , 2010, Carbohydrate research.

[4]  Xi Jiang,et al.  Human susceptibility and resistance to Norwalk virus infection , 2003, Nature Medicine.

[5]  A. Imberty,et al.  Microbial recognition of human cell surface glycoconjugates. , 2008, Current opinion in structural biology.

[6]  A. Imberty,et al.  Achieving high affinity towards a bacterial lectin through multivalent topological isomers of calix[4]arene glycoconjugates. , 2009, Chemistry.

[7]  Hans-Joachim Gabius,et al.  The sugar code: functional lectinomics. , 2002, Biochimica et biophysica acta.

[8]  G. Granata,et al.  Multivalent calixarene-based C-fucosyl derivative: a new Pseudomonas aeruginosa biofilm inhibitor , 2011 .

[9]  U. Krengel,et al.  Molecular basis of cholera blood‐group dependence and implications for a world characterized by climate change , 2010, FEBS letters.

[10]  A. Imberty,et al.  Synthesis and binding properties of divalent and trivalent clusters of the Lewis a disaccharide moiety to Pseudomonas aeruginosa lectin PA-IIL. , 2007, Organic & biomolecular chemistry.

[11]  M. Schachner,et al.  Inhibition of the bacterial lectins of Pseudomonas aeruginosa with monosaccharides and peptides , 2011, European Journal of Clinical Microbiology & Infectious Diseases.

[12]  A. Imberty,et al.  Structural basis of high-affinity glycan recognition by bacterial and fungal lectins. , 2005, Current opinion in structural biology.

[13]  J. Berglund,et al.  Bacterial adhesins: structural studies reveal chaperone function and pilus biogenesis. , 2000, Current opinion in chemical biology.

[14]  Jan Adam,et al.  Unusual entropy-driven affinity of Chromobacterium violaceum lectin CV-IIL toward fucose and mannose. , 2006, Biochemistry.

[15]  A. Imberty,et al.  Burkholderia cenocepacia BC2L-C Is a Super Lectin with Dual Specificity and Proinflammatory Activity , 2011, PLoS pathogens.

[16]  Michaela Wimmerová,et al.  Fucose-binding Lectin from Opportunistic Pathogen Burkholderia ambifaria Binds to Both Plant and Human Oligosaccharidic Epitopes* , 2011, The Journal of Biological Chemistry.

[17]  Serge Pérez,et al.  Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients , 2002, Nature Structural Biology.

[18]  J. Vasseur,et al.  Synthesis of a library of fucosylated glycoclusters and determination of their binding toward Pseudomonas aeruginosa lectin B (PA-IIL) using a DNA-based carbohydrate microarray. , 2012, Bioconjugate chemistry.

[19]  R. Pieters Maximising multivalency effects in protein-carbohydrate interactions. , 2009, Organic & biomolecular chemistry.

[20]  Jean-Louis Reymond,et al.  Inhibition of Pseudomonas aeruginosa biofilms with a glycopeptide dendrimer containing D-amino acids , 2011 .

[21]  A. Imberty,et al.  A TNF-like trimeric lectin domain from Burkholderia cenocepacia with specificity for fucosylated human histo-blood group antigens. , 2010, Structure.

[22]  J. Reymond,et al.  Combinatorial libraries of peptide dendrimers: design, synthesis, on-bead high-throughput screening, bead decoding and characterization , 2009, Nature Protocols.

[23]  J. Jiménez-Barbero,et al.  Chemical Biology of the Sugar Code , 2004, Chembiochem : a European journal of chemical biology.

[24]  S. Edberg,et al.  Relationship between infectious diseases and human blood type , 1989, European Journal of Clinical Microbiology and Infectious Diseases.

[25]  W. Turnbull,et al.  Towards a Structural Basis for the Relationship Between Blood Group and the Severity of El Tor Cholera** , 2012, Angewandte Chemie.

[26]  A. Imberty,et al.  Structural basis of the preferential binding for globo-series glycosphingolipids displayed by Pseudomonas aeruginosa lectin I. , 2008, Journal of molecular biology.

[27]  A. Imberty,et al.  Role of LecA and LecB Lectins in Pseudomonas aeruginosa-Induced Lung Injury and Effect of Carbohydrate Ligands , 2009, Infection and Immunity.

[28]  Jaroslav Koca,et al.  High affinity fucose binding of Pseudomonas aeruginosa lectin PA‐IIL: 1.0 Å resolution crystal structure of the complex combined with thermodynamics and computational chemistry approaches , 2004, Proteins: Structure, Function, and Bioinformatics.

[29]  Hafiz Ahmed,et al.  Structural and functional diversity of lectin repertoires in invertebrates, protochordates and ectothermic vertebrates. , 2004, Current opinion in structural biology.

[30]  I. Goldstein,et al.  The lectins: carbohydrate-binding proteins of plants and animals. , 1978, Advances in carbohydrate chemistry and biochemistry.

[31]  R. Roy,et al.  Synthesis of glycodendrimers containing both fucoside and galactoside residues and their binding properties to Pa-IL and PA-IIL lectins from Pseudomonas aeruginosa , 2007 .

[32]  Michaela Wimmerová,et al.  Rational design and synthesis of optimized glycoclusters for multivalent lectin-carbohydrate interactions: influence of the linker arm. , 2012, Chemistry.

[33]  A E Mourant,et al.  Blood groups and diseases. , 1974, Haematologia.

[34]  A. Imberty,et al.  Structural basis of the affinity for oligomannosides and analogs displayed by BC2L-A, a Burkholderia cenocepacia soluble lectin. , 2010, Glycobiology.

[35]  A. Imberty,et al.  Fucosylated pentaerythrityl phosphodiester oligomers (PePOs): automated synthesis of DNA-based glycoclusters and binding to Pseudomonas aeruginosa lectin (PA-IIL). , 2007, Bioconjugate chemistry.

[36]  J. Reymond,et al.  A combinatorial approach to catalytic peptide dendrimers. , 2004, Angewandte Chemie.

[37]  N. Raikhel,et al.  Lectins, lectin genes, and their role in plant defense. , 1991, The Plant cell.

[38]  R. Loris,et al.  Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. , 2005, Microbiology.

[39]  A. Imberty,et al.  Burkholderia cenocepacia lectin A binding to heptoses from the bacterial lipopolysaccharide. , 2012, Glycobiology.

[40]  W. Morgan,et al.  Neutralization of the Anti-H Agglutinin in Eel Serum by Simple Sugars , 1952, Nature.

[41]  J. Reymond,et al.  Glycopeptide Dendrimers with High Affinity for the Fucose‐Binding Lectin LecB from Pseudomonas aeruginosa , 2009, ChemMedChem.

[42]  A. Imberty,et al.  Glycomimetics and glycodendrimers as high affinity microbial anti-adhesins. , 2008, Chemistry.

[43]  S. Pérez,et al.  Thermodynamics and chemical characterization of protein–carbohydrate interactions: The multivalency issue , 2011 .

[44]  N. Sharon,et al.  Lectins: Carbohydrate-Specific Proteins That Mediate Cellular Recognition. , 1998, Chemical reviews.

[45]  U. Schumacher,et al.  Successful treatment of Pseudomonas aeruginosa respiratory tract infection with a sugar solution - a case report on a lectin based therapeutic principle , 2001, Klinische Padiatrie.

[46]  Anne Imberty Bacterial Lectins and Adhesins: Structures, Ligands and Functions , 2011 .

[47]  P. Satir,et al.  Actin participation in actomyosin contraction. , 1958, Biochimica et biophysica acta.

[48]  A. Imberty,et al.  Binding of different monosaccharides by lectin PA‐IIL from Pseudomonas aeruginosa: Thermodynamics data correlated with X‐ray structures , 2006, FEBS letters.

[49]  J. Reymond,et al.  Peptide and glycopeptide dendrimer apple trees as enzyme models and for biomedical applications. , 2012, Organic & biomolecular chemistry.

[50]  A. Juillerat,et al.  Structural Basis for the ABO Blood-Group Dependence of Plasmodium falciparum Rosetting , 2012, PLoS pathogens.

[51]  R. Roy,et al.  Design and Creativity in Synthesis of Multivalent Neoglycoconjugates , 2010, Advances in Carbohydrate Chemistry and Biochemistry.

[52]  Michaela Wimmerová,et al.  Structural basis for the interaction between human milk oligosaccharides and the bacterial lectin PA-IIL of Pseudomonas aeruginosa. , 2005, The Biochemical journal.

[53]  T. Dam,et al.  Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. , 2002, Chemical reviews.

[54]  N. Sprenger,et al.  Glycans on Secretory Component Participate in Innate Protection against Mucosal Pathogens* , 2006, Journal of Biological Chemistry.

[55]  A. Imberty,et al.  X‐ray Structures and Thermodynamics of the Interaction of PA‐IIL from Pseudomonas aeruginosa with Disaccharide Derivatives , 2007, ChemMedChem.

[56]  L. Wyns,et al.  Structural basis of carbohydrate recognition by the lectin LecB from Pseudomonas aeruginosa. , 2003, Journal of molecular biology.

[57]  H Kaltner,et al.  Animal lectins: from initial description to elaborated structural and functional classification. , 2001, Advances in experimental medicine and biology.

[58]  P. Gagneux,et al.  Evolution of carbohydrate antigens--microbial forces shaping host glycomes? , 2007, Glycobiology.