East Asian hydroclimate responses to the Eocene-Oligocene transition in the Weihe Basin, central China

[1]  C. Garzione,et al.  Timing and mechanisms of Tibetan Plateau uplift , 2022, Nature Reviews Earth & Environment.

[2]  P. Valdes,et al.  The Paleogene to Neogene climate evolution and driving factors on the Qinghai-Tibetan Plateau , 2022, Science China Earth Sciences.

[3]  Jimin Sun,et al.  Enhanced aridification across the Eocene/Oligocene transition evidenced by geochemical record in the Tajik Basin, Central Asia , 2022, Global and Planetary Change.

[4]  F. Pan,et al.  The 173‐kyr Obliquity Cycle Pacing the Asian Monsoon in the Eastern Chinese Loess Plateau From Late Miocene to Pliocene , 2022, Geophysical Research Letters.

[5]  Z. An,et al.  Eccentricity-paced monsoon variability on the northeastern Tibetan Plateau in the Late Oligocene high CO2 world , 2021, Science advances.

[6]  J. Ji,et al.  East Asian paleoclimate change in the Weihe Basin (central China) since the middle Eocene revealed by clay mineral analysis , 2021, Science China Earth Sciences.

[7]  Chunhui Song,et al.  Paleogeography control of Indian monsoon intensification and expansion at 41 Ma. , 2021, Science bulletin.

[8]  Chengshan Wang,et al.  Organic carbon burial is paced by a ~173-ka obliquity cycle in the middle to high latitudes , 2021, Science Advances.

[9]  D. Jiang,et al.  Effects of Tibetan Plateau Growth, Paratethys Sea Retreat and Global Cooling on the East Asian Climate by the Early Miocene , 2021, Geochemistry, Geophysics, Geosystems.

[10]  Y. Miao,et al.  Sedimentary record of climate change across the Eocene/Oligocene transition from the Qaidam Basin, northeastern Tibetan Plateau , 2021 .

[11]  P. Pearson,et al.  The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons , 2021 .

[12]  A. Pullen,et al.  Regional Exhumation and Tectonic History of the Shanxi Rift and Taihangshan, North China , 2021, Tectonics.

[13]  A. Schauer,et al.  Decline of soil respiration in northeastern Tibet through the transition into the Oligocene icehouse , 2020, Palaeogeography, Palaeoclimatology, Palaeoecology.

[14]  Xingang Niu,et al.  Astronomically forced climate cooling across the Eocene–Oligocene transition in the Pearl River Mouth Basin, northern South China Sea , 2020 .

[15]  T. Herbert,et al.  Joint insolation and ice sheet/CO2 forcing on northern China precipitation during Pliocene warmth. , 2020, Science bulletin.

[16]  X. Fang,et al.  Paleolake salinity evolution in the Qaidam Basin (NE Tibetan Plateau) between ~42 and 29 Ma: Links to global cooling and Paratethys sea incursions , 2020 .

[17]  S. Clemens,et al.  Combined high- and low-latitude forcing of East Asian monsoon precipitation variability in the Pliocene warm period , 2020, Science Advances.

[18]  A. Roberts,et al.  Orbital climate variability on the northeastern Tibetan Plateau across the Eocene–Oligocene transition , 2020, Nature Communications.

[19]  D. Silvestro,et al.  Cenozoic evolution of the steppe-desert biome in Central Asia , 2020, Science Advances.

[20]  N. Marwan,et al.  An astronomically dated record of Earth’s climate and its predictability over the last 66 million years , 2020, Science.

[21]  G. Dupont‐Nivet,et al.  The origin of Asian monsoons: a modelling perspective , 2020 .

[22]  B. Windley,et al.  Timing of seawater retreat from proto-Paratethys, sedimentary provenance, and tectonic rotations in the late Eocene-early Oligocene in the Tajik Basin, Central Asia , 2020 .

[23]  J. Ji,et al.  Phased evolution and variation of the South Asian monsoon, and resulting weathering and surface erosion in the Himalaya–Karakoram Mountains, since late Pliocene time using data from Arabian Sea core , 2020, Geological Magazine.

[24]  L. Hinnov,et al.  Astronomically forced climate evolution in a saline lake record of the middle Eocene to Oligocene, Jianghan Basin, China , 2019, Earth and Planetary Science Letters.

[25]  X. Fang,et al.  Paleogene global cooling–induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau , 2019, Geology.

[26]  Majie Fan,et al.  Stable isotope record of middle Eocene summer monsoon and its instability in eastern China , 2019, Global and Planetary Change.

[27]  Mingsong Li,et al.  Acycle: Time-series analysis software for paleoclimate research and education , 2019, Comput. Geosci..

[28]  E. Appel,et al.  Cenozoic magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and its constraints on paleontological, sedimentological and tectonomorphological evolution , 2019, Earth-Science Reviews.

[29]  G. Dupont‐Nivet,et al.  Central Asian moisture modulated by proto-Paratethys Sea incursions since the early Eocene , 2019, Earth and Planetary Science Letters.

[30]  A. Schauer,et al.  Synchronous cooling and decline in monsoonal rainfall in northeastern Tibet during the fall into the Oligocene icehouse , 2019, Geology.

[31]  X. Fang,et al.  Chlorite chemical composition change in response to the Eocene-Oligocene climate transition on the northeastern Tibetan Plateau , 2018, Palaeogeography, Palaeoclimatology, Palaeoecology.

[32]  D. Heslop,et al.  Dominant 100,000-year precipitation cyclicity in a late Miocene lake from northeast Tibet , 2017, Science Advances.

[33]  R. Spicer,et al.  Asian Eocene monsoons as revealed by leaf architectural signatures , 2016 .

[34]  P. Molnar,et al.  A modeling study of the response of Asian summertime climate to the largest geologic forcings of the past 50 Ma , 2016 .

[35]  M. Collinson,et al.  Fossil plant stomata indicate decreasing atmospheric CO 2 prior to the Eocene-Oligocene boundary , 2015 .

[36]  S. Graham,et al.  Role of the westerlies in Central Asia climate over the Cenozoic , 2015 .

[37]  Fahu Chen,et al.  Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia , 2015 .

[38]  Yuxin He,et al.  Terrestrial responses of low-latitude Asia to the Eocene–Oligocene climate transition revealed by integrated chronostratigraphy , 2015 .

[39]  E. Appel,et al.  An Eocene–Miocene continuous rock magnetic record from the sediments in the Xining Basin, NW China: indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift , 2015 .

[40]  B. Windley,et al.  Synchronous turnover of flora, fauna, and climate at the Eocene–Oligocene Boundary in Asia , 2014, Scientific Reports.

[41]  Zhonghui Liu,et al.  Revisiting the Paleogene climate pattern of East Asia: A synthetic review , 2014 .

[42]  Zhengtang Guo,et al.  Clay mineral changes across the Eocene–Oligocene transition in the sedimentary sequence at Xining occurred prior to global cooling , 2014 .

[43]  J. Vandenberghe,et al.  Asian monsoons in a late Eocene greenhouse world , 2014, Nature.

[44]  Chengshan Wang,et al.  Outward-growth of the Tibetan Plateau during the Cenozoic: A review ☆ , 2014 .

[45]  G. Dupont‐Nivet,et al.  Aridification in continental Asia after the Middle Eocene Climatic Optimum (MECO) , 2014 .

[46]  Z. Li,et al.  The Eocene–Oligocene climate transition in the Tarim Basin, Northwest China: Evidence from clay mineralogy , 2013 .

[47]  Jimin Sun,et al.  Eocene seawater retreat from the southwest Tarim Basin and implications for early Cenozoic tectonic evolution in the Pamir Plateau , 2013 .

[48]  Peizhen Zhang,et al.  Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range–Weihe graben: Insights from apatite fission track thermochronology , 2013 .

[49]  T. Utescher,et al.  Eocene monsoon prevalence over China: A paleobotanical perspective , 2012 .

[50]  D. P. Murphy,et al.  A Cenozoic record of the equatorial Pacific carbonate compensation depth , 2012, Nature.

[51]  Rui Zhang,et al.  Link between global cooling and mammalian transformation across the Eocene–Oligocene boundary in the continental interior of Asia , 2012, International Journal of Earth Sciences.

[52]  J. Zachos,et al.  Foraminiferal Mg/Ca evidence for Southern Ocean cooling across the Eocene–Oligocene transition , 2012 .

[53]  P. Wilson,et al.  Early Oligocene glaciation and productivity in the eastern equatorial Pacific: Insights into global carbon cycling , 2011 .

[54]  J. Toggweiler,et al.  Impact of Antarctic Circumpolar Current Development on Late Paleogene Ocean Structure , 2011, Science.

[55]  W. Krijgsman,et al.  Step-wise change of Asian interior climate preceding the Eocene-Oligocene Transition (EOT) , 2011 .

[56]  F. Hilgen,et al.  Asian aridification linked to the first step of the Eocene-Oligocene climate Transition (EOT) in obliquity-dominated terrestrial records (Xining Basin, China) , 2010 .

[57]  P. Pearson,et al.  Atmospheric carbon dioxide through the Eocene–Oligocene climate transition , 2009, Nature.

[58]  K. Miller,et al.  Climate threshold at the Eocene-Oligocene transition: Antarctic ice sheet influence on ocean circulation , 2009 .

[59]  K. Miller,et al.  Stepwise transition from the Eocene greenhouse to the Oligocene icehouse , 2008 .

[60]  Chengshan Wang,et al.  Constraints on the early uplift history of the Tibetan Plateau , 2008, Proceedings of the National Academy of Sciences.

[61]  Gerald R. Dickens,et al.  An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics , 2008, Nature.

[62]  X. Fang,et al.  Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition , 2007, Nature.

[63]  D. Zhang,et al.  Environmental records of lacustrine sediments in different time scales: Sediment grain size as an example , 2004 .

[64]  Wei Huang,et al.  Deep-water Earliest Oligocene Glacial Maximum (EOGM) in South Atlantic , 2004 .

[65]  Shuzhen Peng,et al.  Late Miocene–Pliocene development of Asian aridification as recorded in the Red-Earth Formation in northern China , 2004 .

[66]  R. DeConto,et al.  Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 , 2003, Nature.

[67]  J. Cogné,et al.  PaleoMac: A Macintosh™ application for treating paleomagnetic data and making plate reconstructions , 2003 .

[68]  J. Kutzbach,et al.  Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times , 2001, Nature.

[69]  G. Ramstein,et al.  Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years , 1997, Nature.

[70]  Karen A. Salamy,et al.  High‐resolution (104 years) deep‐sea foraminiferal stable isotope records of the Eocene‐Oligocene climate transition , 1996 .

[71]  J. A. Wolfe The eocene-oligocene transition , 1995 .

[72]  L. Tungsheng,et al.  Stepwise coupling of monsoon circulations to global ice volume variations during the late Cenozoic , 1993 .

[73]  J. Kutzbach,et al.  Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution , 1992, Nature.

[74]  James D. Wright,et al.  Unlocking the Ice House: Oligocene‐Miocene oxygen isotopes, eustasy, and margin erosion , 1991 .

[75]  J. Kutzbach,et al.  Sensitivity of climate to late Cenozoic uplift in southern Asia and the American west: Numerical experiments , 1989 .

[76]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[77]  F. Lowes,et al.  The discrimination of mean directions drawn from Fisher distributions , 1981 .

[78]  J. Kirschvink The least-squares line and plane and the analysis of palaeomagnetic data , 1980 .

[79]  J. Ogg Geomagnetic Polarity Time Scale , 2020, Geologic Time Scale 2020.

[80]  Wang Jianqian Pre-Cenozoic geological characteristics and oil-gas significance in Weihe basin, Shaanxi Province , 2015 .

[81]  Huayu Lu,et al.  Evolution of the monsoon and dry climate in East Asia during late Cenozoic: A review , 2013, Science China Earth Sciences.

[82]  Huayu Lu,et al.  Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia , 2010 .

[83]  Henk Brinkhuis,et al.  Climate Transition Global Cooling During the Eocene-Oligocene , 2009 .

[84]  Caroline H. Lear,et al.  Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean , 2005, Nature.

[85]  J. Vandenberghe,et al.  Aeolian origin and palaeoclimatic implications of the 'Red Clay' (north China) as evidenced by grain-size distribution. , 2001 .

[86]  Jonathan M. Lees,et al.  Robust estimation of background noise and signal detection in climatic time series , 1996 .