The pre-rRNA processing factor DEF is rate limiting for the pathogenesis of MYCN-driven neuroblastoma

[1]  U. Kutay,et al.  Amino acid-dependent signaling via S6K1 and MYC is essential for regulation of rDNA transcription , 2016, Oncotarget.

[2]  R. Pearson,et al.  S6 Kinase is essential for MYC-dependent rDNA transcription in Drosophila. , 2015, Cellular signalling.

[3]  M. Khokha,et al.  The Ribosome Biogenesis Factor Nol11 Is Required for Optimal rDNA Transcription and Craniofacial Development in Xenopus , 2015, PLoS genetics.

[4]  Shigeo Nakamura,et al.  Nucleolar protein PES1 is a marker of neuroblastoma outcome and is associated with neuroblastoma differentiation , 2015, Cancer science.

[5]  A. Chakraborty,et al.  An overview of pre-ribosomal RNA processing in eukaryotes , 2014, Wiley interdisciplinary reviews. RNA.

[6]  D. G. Pestov,et al.  Two orthogonal cleavages separate subunit RNAs in mouse ribosome biogenesis , 2014, Nucleic acids research.

[7]  R. Pearson,et al.  Targeting the nucleolus for cancer intervention. , 2014, Biochimica et biophysica acta.

[8]  Stephen T. C. Wong,et al.  Targeting RPL39 and MLF2 reduces tumor initiation and metastasis in breast cancer by inhibiting nitric oxide synthase signaling , 2014, Proceedings of the National Academy of Sciences.

[9]  Jinrong Peng,et al.  Haploinsufficiency of Def Activates p53-Dependent TGFβ Signalling and Causes Scar Formation after Partial Hepatectomy , 2014, PloS one.

[10]  R. Hannan,et al.  Targeting RNA polymerase I to treat MYC-driven cancer , 2014, Oncogene.

[11]  Yvonne J. Goos,et al.  A comparative study of nucleostemin family members in zebrafish reveals specific roles in ribosome biogenesis. , 2014, Developmental biology.

[12]  C. Bieberich,et al.  A targeting modality for destruction of RNA polymerase I that possesses anticancer activity. , 2014, Cancer cell.

[13]  P. Yelick,et al.  Tissue Specific Roles for the Ribosome Biogenesis Factor Wdr43 in Zebrafish Development , 2014, PLoS genetics.

[14]  R. Hannan,et al.  The nucleolus: an emerging target for cancer therapy. , 2013, Trends in molecular medicine.

[15]  J. Woolford,et al.  Ribosome Biogenesis in the Yeast Saccharomyces cerevisiae , 2013, Genetics.

[16]  A. Look,et al.  Neuroblastoma of undifferentiated subtype, prognostic significance of prominent nucleolar formation, and MYC/MYCN protein expression: A report from the Children's Oncology Group , 2013, Cancer.

[17]  M. Pack,et al.  p53-Mediated Biliary Defects Caused by Knockdown of cirh1a, the Zebrafish Homolog of the Gene Responsible for North American Indian Childhood Cirrhosis , 2013, PloS one.

[18]  William A Weiss,et al.  Neuroblastoma and MYCN. , 2013, Cold Spring Harbor perspectives in medicine.

[19]  L. Tafforeau,et al.  The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of Pre-rRNA processing factors. , 2013, Molecular cell.

[20]  L. Montanaro,et al.  The emerging role of RNA polymerase I transcription machinery in human malignancy: a clinical perspective , 2013, OncoTargets and therapy.

[21]  B. Paw,et al.  Distinct Neuroblastoma-associated Alterations of PHOX2B Impair Sympathetic Neuronal Differentiation in Zebrafish Models , 2013, PLoS genetics.

[22]  Michael A. Dyer,et al.  Neuroblastoma: developmental biology, cancer genomics and immunotherapy , 2013, Nature Reviews Cancer.

[23]  R. Pearson,et al.  Dysregulation of the basal RNA polymerase transcription apparatus in cancer , 2013, Nature Reviews Cancer.

[24]  Jinrong Peng,et al.  Def Functions as a Cell Autonomous Factor in Organogenesis of Digestive Organs in Zebrafish , 2013, PloS one.

[25]  F. Westermann,et al.  Hox-C9 activates the intrinsic pathway of apoptosis and is associated with spontaneous regression in neuroblastoma , 2013, Cell Death and Disease.

[26]  M. O'Donohue,et al.  Gradual processing of the ITS1 from the nucleolus to the cytoplasm during synthesis of the human 18S rRNA , 2013, Nucleic acids research.

[27]  D. Tollervey,et al.  Both endonucleolytic and exonucleolytic cleavage mediate ITS1 removal during human ribosomal RNA processing , 2013, The Journal of cell biology.

[28]  R. Pearson,et al.  Dysregulation of RNA polymerase I transcription during disease. , 2013, Biochimica et biophysica acta.

[29]  Seok-Hyung Kim,et al.  Autophagy Induction Is a Tor- and Tp53-Independent Cell Survival Response in a Zebrafish Model of Disrupted Ribosome Biogenesis , 2013, PLoS genetics.

[30]  D. Lane,et al.  Def defines a conserved nucleolar pathway that leads p53 to proteasome-independent degradation , 2013, Cell Research.

[31]  Yunhan Hong,et al.  Ribosome biogenesis factor Bms1-like is essential for liver development in zebrafish. , 2012, Journal of genetics and genomics = Yi chuan xue bao.

[32]  S. Lowe,et al.  Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. , 2012, Cancer cell.

[33]  G. Thomas,et al.  Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint. , 2012, Genes & development.

[34]  D. Neuberg,et al.  Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. , 2012, Cancer cell.

[35]  Ricky W Johnstone,et al.  AKT Promotes rRNA Synthesis and Cooperates with c-MYC to Stimulate Ribosome Biogenesis in Cancer , 2011, Science Signaling.

[36]  G. McArthur,et al.  c-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation , 2010, Nucleic acids research.

[37]  S. Baserga,et al.  The DEAD-box RNA helicase-like Utp25 is an SSU processome component. , 2010, RNA.

[38]  E. Harscoët,et al.  NOF1 Encodes an Arabidopsis Protein Involved in the Control of rRNA Expression , 2010, PloS one.

[39]  M. Goldfeder,et al.  Utp25p, a nucleolar Saccharomyces cerevisiae protein, interacts with U3 snoRNP subunits and affects processing of the 35S pre‐rRNA , 2010, The FEBS journal.

[40]  J. Maris Recent advances in neuroblastoma. , 2010, The New England journal of medicine.

[41]  Raymond L. Stallings,et al.  Global MYCN Transcription Factor Binding Analysis in Neuroblastoma Reveals Association with Distinct E-Box Motifs and Regions of DNA Hypermethylation , 2009, PloS one.

[42]  Qinbo Zhou,et al.  Bystin-like protein is upregulated in hepatocellular carcinoma and required for nucleologenesis in cancer cell proliferation , 2009, Cell Research.

[43]  L. Montanaro,et al.  What the nucleolus says to a tumour pathologist , 2009, Histopathology.

[44]  S. Gimelli,et al.  Presence of 1q gain and absence of 7p gain are new predictors of local or metastatic relapse in localized resectable neuroblastoma. , 2009, Neuro-oncology.

[45]  Davide Ruggero,et al.  Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency , 2008, Nature.

[46]  H. Kiyokawa,et al.  Eukaryotic initiation factor 6 is rate-limiting in translation, growth and transformation , 2008, Nature.

[47]  L. Montanaro,et al.  Nucleolus, ribosomes, and cancer. , 2008, The American journal of pathology.

[48]  L. Zon,et al.  Co-injection strategies to modify radiation sensitivity and tumor initiation in transgenic Zebrafish , 2008, Oncogene.

[49]  L. Lau,et al.  Assays for Ribosomal RNA Processing and Ribosome Assembly , 2008, Current protocols in cell biology.

[50]  F. Boisvert,et al.  The multifunctional nucleolus , 2007, Nature Reviews Molecular Cell Biology.

[51]  M. Ohira,et al.  Functional characterization of a new p53 mutant generated by homozygous deletion in a neuroblastoma cell line. , 2007, Biochemical and biophysical research communications.

[52]  M. Meyerson,et al.  Genome-Wide Analysis of Neuroblastomas using High-Density Single Nucleotide Polymorphism Arrays , 2007, PloS one.

[53]  R. Toyama,et al.  Perturbation of rRNA Synthesis in the bap28 Mutation Leads to Apoptosis Mediated by p53 in the Zebrafish Central Nervous System* , 2006, Journal of Biological Chemistry.

[54]  Brigitte L. Arduini,et al.  Zebrafish foxd3 is selectively required for neural crest specification, migration and survival. , 2006, Developmental biology.

[55]  Zhenhai Zhang,et al.  Loss of function of def selectively up-regulates Delta113p53 expression to arrest expansion growth of digestive organs in zebrafish. , 2005, Genes & development.

[56]  B. Edgar,et al.  Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development , 2005, Nature Cell Biology.

[57]  L. Zon,et al.  tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  J. Gallagher,et al.  The Small-Subunit Processome Is a Ribosome Assembly Intermediate , 2004, Eukaryotic Cell.

[59]  M. Dai,et al.  Inhibition of MDM2-mediated p53 Ubiquitination and Degradation by Ribosomal Protein L5* , 2004, Journal of Biological Chemistry.

[60]  R. Pearson,et al.  MAD1 and c‐MYC regulate UBF and rDNA transcription during granulocyte differentiation , 2004, The EMBO journal.

[61]  M. Kubbutat,et al.  Regulation of HDM2 activity by the ribosomal protein L11. , 2003, Cancer cell.

[62]  J. Shabanowitz,et al.  A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis , 2002, Nature.

[63]  P. D. Henion,et al.  Differentiation and maturation of zebrafish dorsal root and sympathetic ganglion neurons , 2002, The Journal of comparative neurology.

[64]  R. Kelsh,et al.  Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. , 2001, Development.

[65]  M Schwab,et al.  N‐myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis , 2001, The EMBO journal.

[66]  J. Warner,et al.  The economics of ribosome biosynthesis in yeast. , 1999, Trends in biochemical sciences.

[67]  H. Rohrer,et al.  The Phox2 homeodomain proteins are sufficient to promote the development of sympathetic neurons. , 1999, Development.

[68]  K K Matthay,et al.  Molecular biology of neuroblastoma. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[69]  S. Gerbi,et al.  U3 small nucleolar RNA is essential for cleavage at sites 1, 2 and 3 in pre-rRNA and determines which rRNA processing pathway is taken in Xenopus oocytes. , 1999, Journal of molecular biology.

[70]  Cheol‐Hee Kim,et al.  Zebrafish elav/HuC homologue as a very early neuronal marker , 1996, Neuroscience Letters.

[71]  S. Gerbi,et al.  In vivo disruption of Xenopus U3 snRNA affects ribosomal RNA processing. , 1990, The EMBO journal.

[72]  R. Weinberg,et al.  Processing of 45 s nucleolar RNA. , 1970, Journal of molecular biology.

[73]  R. Weinberg,et al.  Acrylamide gel electrophoresis of HeLa cell nucleolar RNA. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[74]  S. Baserga,et al.  The small subunit processome in ribosome biogenesis—progress and prospects , 2011, Wiley interdisciplinary reviews. RNA.

[75]  A. Look,et al.  Zebrafish as a model for the study of human cancer. , 2011, Methods in cell biology.

[76]  H. Shimada,et al.  Pathology of peripheral neuroblastic tumors: Significance of prominent nucleoli in undifferentiated/poorly differentiated neuroblastoma , 2008, Pathology & Oncology Research.

[77]  D. Stram,et al.  Enlarged and prominent nucleoli may be indicative of MYCN amplification , 2005, Cancer.