Electrical, Thermal, and Mechanical Characterization of Novel Segmented-Leg Thermoelectric Modules

[1]  Ping Xie,et al.  Lead germanium telluride: a mechanically robust infrared high-index layer , 2011 .

[2]  Jonathan D'Angelo,et al.  Temperature dependent thermoelectric material power factor measurement system. , 2010, The Review of scientific instruments.

[3]  Edward J. Timm,et al.  Room temperature Young's modulus, shear modulus, Poisson's ratio and hardness of PbTe–PbS thermoelectric materials , 2010 .

[4]  Qingjie Zhang,et al.  Thermal Stability of Barium and Indium Double-Filled Skutterudite Ba0.3In0.2Co3.95Ni0.05Sb12 Coated by SiO2 Nanoparticles , 2010 .

[5]  Jihui Yang,et al.  Solubility study of Yb in n-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties , 2009 .

[6]  Emil Sandoz-Rosado,et al.  Experimental Characterization of Thermoelectric Modules and Comparison with Theoretical Models for Power Generation , 2009 .

[7]  M. Kanatzidis,et al.  Temperature-dependent elastic moduli of lead telluride-based thermoelectric materials , 2009 .

[8]  M. Kanatzidis,et al.  The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy , 2008 .

[9]  H. Schock,et al.  Hardness as a function of composition for n-type LAST thermoelectric material , 2008 .

[10]  Min Zhou,et al.  Nanostructured AgPb(m)SbTe(m+2) system bulk materials with enhanced thermoelectric performance. , 2008, Journal of the American Chemical Society.

[11]  Z. Dashevsky,et al.  Mechanical properties of PbTe-based thermoelectric semiconductors , 2008 .

[12]  H. Schock,et al.  Young's modulus as a function of composition for an n-type lead–antimony–silver–telluride (LAST) thermoelectric material , 2007 .

[13]  Ctirad Uher,et al.  Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb(1-x)Sn(x)Te-PbS. , 2007, Journal of the American Chemical Society.

[14]  Bünyamin Ciylan,et al.  Design of a thermoelectric module test system using a novel test method , 2007 .

[15]  H. Schock,et al.  Weibull analysis of the biaxial fracture strength of a cast p-type LAST-T thermoelectric material , 2006 .

[16]  M. Kanatzidis,et al.  Nanostructuring and High Thermoelectric Efficiency in p‐Type Ag(Pb1 – ySny)mSbTe2 + m , 2006 .

[17]  Zinovy Dashevsky,et al.  High performance n-type PbTe-based materials for thermoelectric applications , 2005 .

[18]  H. Kaibe,et al.  Efficiency determination and general characterization of thermoelectric generators using an absolute measurement of the heat flow , 2005 .

[19]  M. El-Genk,et al.  Performance Test Results of a Skutterudite-Based Unicouple with a Metallic Coating , 2005 .

[20]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[21]  Gao Min,et al.  Evaluation of thermoelectric modules for power generation , 1998 .

[22]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[23]  A. Crocker,et al.  Microhardness in PbTe and related alloys , 1978 .

[24]  R. Roy,et al.  Micro-indentation hardness variation as a function of composition for polycrystalline solutions in the systems PbS/PbTe, PbSe/PbTe, and PbS/PbSe , 1969 .

[25]  E. V. Somers,et al.  Optimization of a Sandwiched Thermoelectric Device , 1961 .

[26]  F. Ren,et al.  Advanced soldier-based thermoelectric power systems using battlefield heat sources , 2009 .

[27]  E. Rogacheva,et al.  Anomalous composition dependence of microhardness in Pb1-xGexTe semiconductor solid solutions , 1999 .

[28]  A. Migliori Resonant ultrasound spectroscopy , 2016 .

[29]  John L. Sarrao,et al.  Resonant ultrasound spectroscopy : applications to physics, materials measurements, and nondestructive evaluation , 1997 .

[30]  R. W. Ure,et al.  Calculation of Efficiency of Thermoelectric Devices , 1960 .