Axonal transport plays a crucial role in mediating the axon-protective effects of NmNAT

[1]  M. Miquel,et al.  Alterations of mitochondrial dynamics allow retrograde propagation of locally initiated axonal insults , 2016, Scientific Reports.

[2]  B. Kornmann,et al.  The molecular hug between the ER and the mitochondria. , 2013, Current opinion in cell biology.

[3]  Sama F. Sleiman,et al.  In vitro ischemia suppresses hypoxic induction of hypoxia‐inducible factor‐1α by inhibition of synthesis and not enhanced degradation , 2013, Journal of neuroscience research.

[4]  Robert H. Brown,et al.  Inhibition of Fast Axonal Transport by Pathogenic SOD1 Involves Activation of p38 MAP Kinase , 2013, PloS one.

[5]  R. Zhai,et al.  Mislocalization of neuronal mitochondria reveals regulation of Wallerian degeneration and NMNAT/WLD(S)-mediated axon protection independent of axonal mitochondria. , 2013, Human molecular genetics.

[6]  Jean-Pierre Julien,et al.  Axonal transport deficits and neurodegenerative diseases , 2013, Nature Reviews Neuroscience.

[7]  R. Adalbert,et al.  Review: Axon pathology in age‐related neurodegenerative disorders , 2013, Neuropathology and applied neurobiology.

[8]  F. Saudou,et al.  Vesicular Glycolysis Provides On-Board Energy for Fast Axonal Transport , 2013, Cell.

[9]  P. Narasimhan,et al.  Prevention of JNK Phosphorylation as a Mechanism for Rosiglitazone in Neuroprotection after Transient Cerebral Ischemia: Activation of Dual Specificity Phosphatase , 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[10]  M. Bootman,et al.  Intra-axonal calcium changes after axotomy in wild-type and slow Wallerian degeneration axons , 2012, Neuroscience.

[11]  D. Bourdette,et al.  Focal Increases of Axoplasmic Ca2+, Aggregation of Sodium–Calcium Exchanger, N-type Ca2+ Channel, and Actin Define the Sites of Spheroids in Axons Undergoing Oxidative Stress , 2012, The Journal of Neuroscience.

[12]  Mary A. Logan,et al.  dSarm/Sarm1 Is Required for Activation of an Injury-Induced Axon Death Pathway , 2012, Science.

[13]  D. Bourdette,et al.  Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases , 2012, Molecular Neurodegeneration.

[14]  F. Court,et al.  Mitochondria as a central sensor for axonal degenerative stimuli , 2012, Trends in Neurosciences.

[15]  N. Bonini,et al.  A Novel Drosophila Model of Nerve Injury Reveals an Essential Role of Nmnat in Maintaining Axonal Integrity , 2012, Current Biology.

[16]  J. Geddes,et al.  WldS Prevents Axon Degeneration through Increased Mitochondrial Flux and Enhanced Mitochondrial Ca2+ Buffering , 2012, Current Biology.

[17]  T. Araki,et al.  Wallerian degeneration slow mouse neurons are protected against cell death caused by mechanisms involving mitochondrial electron transport dysfunction , 2012, Journal of neuroscience research.

[18]  S. Kaech,et al.  Short-term high-resolution imaging of developing hippocampal neurons in culture. , 2012, Cold Spring Harbor protocols.

[19]  S. Kaech,et al.  General considerations for live imaging of developing hippocampal neurons in culture. , 2012, Cold Spring Harbor protocols.

[20]  S. Kaech,et al.  Long-term time-lapse imaging of developing hippocampal neurons in culture. , 2012, Cold Spring Harbor Protocols.

[21]  R. Zhai,et al.  CREB-activity and nmnat2 transcription are down-regulated prior to neurodegeneration, while NMNAT2 over-expression is neuroprotective, in a mouse model of human tauopathy. , 2012, Human molecular genetics.

[22]  S. Scherer,et al.  Microtubules, axonal transport, and neuropathy. , 2011, The New England journal of medicine.

[23]  Susan M. Jones,et al.  Primary culture of cellular subtypes from postnatal mouse for in vitro studies of oxygen glucose deprivation , 2011, Journal of Neuroscience Methods.

[24]  K. O’Malley,et al.  The Parkinsonian Mimetic, MPP+, Specifically Impairs Mitochondrial Transport in Dopamine Axons , 2011, The Journal of Neuroscience.

[25]  Mary T. Brinkoetter,et al.  A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis , 2011, Nature Medicine.

[26]  C. Blackstone,et al.  Hereditary spastic paraplegias: membrane traffic and the motor pathway , 2011, Nature Reviews Neuroscience.

[27]  Q. Zhai,et al.  Overexpression of Wlds or Nmnat2 in mauthner cells by single‐cell electroporation delays axon degeneration in live zebrafish , 2010, Journal of neuroscience research.

[28]  J. Milbrandt,et al.  Axonal Degeneration Is Blocked by Nicotinamide Mononucleotide Adenylyltransferase (Nmnat) Protein Transduction into Transected Axons* , 2010, The Journal of Biological Chemistry.

[29]  Erik Sahai,et al.  Deficits in axonal transport precede ALS symptoms in vivo , 2010, Proceedings of the National Academy of Sciences.

[30]  J. Milbrandt,et al.  Amyloid Precursor Protein Cleavage-Dependent and -Independent Axonal Degeneration Programs Share a Common Nicotinamide Mononucleotide Adenylyltransferase 1-Sensitive Pathway , 2010, The Journal of Neuroscience.

[31]  R. Ribchester,et al.  Targeting NMNAT1 to Axons and Synapses Transforms Its Neuroprotective Potency In Vivo , 2010, The Journal of Neuroscience.

[32]  P. Hollenbeck,et al.  Defects in Mitochondrial Axonal Transport and Membrane Potential without Increased Reactive Oxygen Species Production in a Drosophila Model of Friedreich Ataxia , 2010, The Journal of Neuroscience.

[33]  S. Ferreira,et al.  Amyloid-β Peptide Oligomers Disrupt Axonal Transport through an NMDA Receptor-Dependent Mechanism That Is Mediated by Glycogen Synthase Kinase 3β in Primary Cultured Hippocampal Neurons , 2010, The Journal of Neuroscience.

[34]  M. Freeman,et al.  Wallerian degeneration, wld(s), and nmnat. , 2010, Annual review of neuroscience.

[35]  Guy C. Brown,et al.  Inflammatory Neurodegeneration and Mechanisms of Microglial Killing of Neurons , 2010, Molecular Neurobiology.

[36]  Q. Zhai,et al.  Nmnat2 delays axon degeneration in superior cervical ganglia dependent on its NAD synthesis activity , 2010, Neurochemistry International.

[37]  D. Chan,et al.  Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases , 2009, Human molecular genetics.

[38]  Chun-Fang Huang,et al.  Pathogenic Huntingtin Inhibits Fast Axonal Transport by Activating JNK3 and Phosphorylating Kinesin , 2009, Nature Neuroscience.

[39]  T. Araki,et al.  Nicotinamide Mononucleotide Adenylyltransferase Expression in Mitochondrial Matrix Delays Wallerian Degeneration , 2009, The Journal of Neuroscience.

[40]  J. Milbrandt,et al.  Nicotinamide Mononucleotide Adenylyl Transferase-Mediated Axonal Protection Requires Enzymatic Activity But Not Increased Levels of Neuronal Nicotinamide Adenine Dinucleotide , 2009, The Journal of Neuroscience.

[41]  D. Attwell,et al.  Miro1 Is a Calcium Sensor for Glutamate Receptor-Dependent Localization of Mitochondria at Synapses , 2009, Neuron.

[42]  Xinnan Wang,et al.  The Mechanism of Ca2+-Dependent Regulation of Kinesin-Mediated Mitochondrial Motility , 2009, Cell.

[43]  G. Hajnóczky,et al.  Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase , 2008, Proceedings of the National Academy of Sciences.

[44]  L. Goldstein,et al.  Enhanced Sensitivity of Striatal Neurons to Axonal Transport Defects Induced by Mutant Huntingtin , 2008, The Journal of Neuroscience.

[45]  J. Milbrandt,et al.  Nmnat Delays Axonal Degeneration Caused by Mitochondrial and Oxidative Stress , 2008, The Journal of Neuroscience.

[46]  D. Chan,et al.  Functions and dysfunctions of mitochondrial dynamics , 2007, Nature Reviews Molecular Cell Biology.

[47]  Aaron DiAntonio,et al.  Control of a Kinesin-Cargo Linkage Mechanism by JNK Pathway Kinases , 2007, Current Biology.

[48]  D. Chan,et al.  Mitochondrial dynamics in disease. , 2007, The New England journal of medicine.

[49]  S. Kaech,et al.  Culturing hippocampal neurons , 2006, Nature Protocols.

[50]  J. Milbrandt,et al.  Stimulation of Nicotinamide Adenine Dinucleotide Biosynthetic Pathways Delays Axonal Degeneration after Axotomy , 2006, The Journal of Neuroscience.

[51]  G. Arbuthnott,et al.  Delayed synaptic degeneration in the CNS of Wlds mice after cortical lesion. , 2006, Brain : a journal of neurology.

[52]  T. Schwarz,et al.  Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent , 2006, The Journal of cell biology.

[53]  M. Coleman Axon degeneration mechanisms: commonality amid diversity , 2005, Nature Reviews Neuroscience.

[54]  W. Gu,et al.  A local mechanism mediates NAD-dependent protection of axon degeneration , 2005, The Journal of cell biology.

[55]  Akio Suzumura,et al.  Neuritic Beading Induced by Activated Microglia Is an Early Feature of Neuronal Dysfunction Toward Neuronal Death by Inhibition of Mitochondrial Respiration and Axonal Transport* , 2005, Journal of Biological Chemistry.

[56]  H. Neumann,et al.  Breakdown of Axonal Synaptic Vesicle Precursor Transport by Microglial Nitric Oxide , 2005, The Journal of Neuroscience.

[57]  R. Ribchester,et al.  A rat model of slow Wallerian degeneration (WldS) with improved preservation of neuromuscular synapses , 2005, The European journal of neuroscience.

[58]  Hitoshi Osaka,et al.  The slow Wallerian degeneration gene, WldS, inhibits axonal spheroid pathology in gracile axonal dystrophy mice. , 2004, Brain : a journal of neurology.

[59]  M. Tymianski,et al.  Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. , 2003, Cell calcium.

[60]  N. Hirokawa,et al.  Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head , 2003, The Journal of cell biology.

[61]  S. Kaech,et al.  Two Distinct Mechanisms Target Membrane Proteins to the Axonal Surface , 2003, Neuron.

[62]  V. Perry,et al.  Axon pathology in neurological disease: a neglected therapeutic target , 2002, Trends in Neurosciences.

[63]  J. Glass,et al.  Wlds mice are resistant to paclitaxel (taxol) neuropathy , 2002, Annals of neurology.

[64]  K. Davies,et al.  Calcium and oxidative stress: from cell signaling to cell death. , 2002, Molecular immunology.

[65]  Nancy Ratner,et al.  Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin‐based motility , 2002, The EMBO journal.

[66]  J. de Cristóbal,et al.  Inhibition of Glutamate Release via Recovery of ATP Levels Accounts for a Neuroprotective Effect of Aspirin in Rat Cortical Neurons Exposed to Oxygen-Glucose Deprivation , 2002, Stroke.

[67]  G. Banker,et al.  The Role of Selective Transport in Neuronal Protein Sorting , 2000, Neuron.

[68]  V. Perry,et al.  An 85-kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[69]  W. Almers,et al.  Targeting of green fluorescent protein to neuroendocrine secretory granules: a new tool for real time studies of regulated protein secretion. , 1997, European journal of cell biology.

[70]  P. Sonderegger,et al.  Cell adhesion molecules NgCAM and axonin-1 form heterodimers in the neuronal membrane and cooperate in neurite outgrowth promotion , 1996, The Journal of cell biology.

[71]  P. Hollenbeck,et al.  Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons , 1995, The Journal of cell biology.

[72]  Tullio Pozzan,et al.  Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells , 1995, Current Biology.

[73]  Yamamura Ken-ichi,et al.  Efficient selection for high-expression transfectants with a novel eukaryotic vector , 1991 .

[74]  G. Banker,et al.  Developments in neuronal cell culture , 1988, Nature.