Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength

Broadband light sources play essential roles in diverse fields, such as high-capacity optical communications, optical coherence tomography, optical spectroscopy, and spectrograph calibration. Although a nonclassical state from spontaneous parametric down-conversion may serve as a quantum counterpart, its detection and characterization have been a challenging task. Here we demonstrate the direct detection of photon numbers of an ultrabroadband (110 nm FWHM) squeezed state in the telecom band centred at 1535 nm wavelength, using a superconducting transition-edge sensor. The observed photon-number distributions violate Klyshko's criterion for the nonclassicality. From the observed photon-number distribution, we evaluate the second- and third-order correlation functions, and characterize a multimode structure, which implies that several tens of orthonormal modes of squeezing exist in the single optical pulse. Our results and techniques open up a new possibility to generate and characterize frequency-multiplexed nonclassical light sources for quantum info-communications technology.

[1]  Aaron J. Miller,et al.  Counting near-infrared single-photons with 95% efficiency. , 2008, Optics express.

[2]  A. Lvovsky,et al.  Continuous-variable optical quantum-state tomography , 2009 .

[3]  Shota Yokoyama,et al.  Ultra-large-scale continuous-variable cluster states multiplexed in the time domain , 2013, Nature Photonics.

[4]  Sae Woo Nam,et al.  Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths. , 2011, Optics express.

[5]  Yuta Takahashi,et al.  Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength , 2010 .

[6]  Yoshichika Miwa,et al.  Parallel generation of quadripartite cluster entanglement in the optical frequency comb. , 2011, Physical review letters.

[7]  Matsuoka,et al.  Photon antibunching in pulsed squeezed light generated via parametric amplification. , 1993, Physical review letters.

[8]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[9]  Julius Goldhar,et al.  Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination , 2013, Nature Photonics.

[10]  I. Coddington,et al.  Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. , 2007, Physical review letters.

[11]  P. Knight,et al.  Introductory quantum optics , 2004 .

[12]  Konrad Banaszek,et al.  Photon engineering for quantum information processing , 2003, Quantum Inf. Comput..

[13]  Photon number statistics of multimode parametric down-conversion. , 2008, Physical review letters.

[14]  A. Lvovsky,et al.  Decomposing a pulsed optical parametric amplifier into independent squeezers , 2006, quant-ph/0601170.

[15]  Andreas Christ,et al.  Probing multimode squeezing with correlation functions , 2010, 1012.0262.

[16]  K. Banaszek,et al.  Photon number resolving detection using time-multiplexing , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[17]  Takashi Kurokawa,et al.  Frequency-comb-based interferometer for profilometry and tomography. , 2006, Optics letters.

[18]  G. Agrawal Fiber-Optic Communication Systems: Agrawal/Fiber-Optic , 2010 .

[19]  D. Klyshko Observable signs of nonclassical light , 1996 .

[20]  Law,et al.  Continuous frequency entanglement: effective finite hilbert space and entropy control , 2000, Physical review letters.

[21]  Ian A. Walmsley,et al.  Eliminating frequency and space-time correlations in multiphoton states , 2001 .

[22]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[23]  Masahide Sasaki,et al.  Quantum receiver beyond the standard quantum limit of coherent optical communication. , 2011, Physical review letters.

[24]  James C. Gates,et al.  On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing , 2011 .

[25]  Goëry Genty,et al.  Fiber supercontinuum sources (Invited) , 2007 .

[26]  Marco Genovese,et al.  Quantum characterization of superconducting photon counters , 2011, 1103.2991.

[27]  Christine Silberhorn,et al.  A quantum pulse gate based on spectrally engineered sum frequency generation. , 2010, Optics express.

[28]  Ady Arie,et al.  Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4 , 1999 .

[29]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[30]  H. Takara,et al.  Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source , 2006, Journal of Lightwave Technology.

[31]  Taro Itatani,et al.  Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling. , 2011, Optics express.

[32]  Stephen M. Barnett,et al.  Methods in Theoretical Quantum Optics , 1997 .

[33]  Christine Silberhorn,et al.  How colors influence numbers: Photon statistics of parametric down-conversion , 2008, 0812.3597.

[34]  Christine Silberhorn,et al.  Spectral structure and decompositions of optical states, and their applications , 2006, quant-ph/0609004.

[35]  Yu-Ping Huang,et al.  Mode-resolved photon counting via cascaded quantum frequency conversion. , 2012, Optics letters.

[36]  Brandon Botzer,et al.  Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb. , 2012, Optics express.

[37]  G. Milburn,et al.  Quantum computation with optical coherent states , 2002, QELS 2002.

[38]  Zhu,et al.  Photocount distributions for continuous-wave squeezed light. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[39]  Christine Silberhorn,et al.  Fiber-assisted detection with photon number resolution. , 2003, Optics letters.

[40]  S. Suzuki,et al.  Multimode theory of measurement-induced non-Gaussian operation on wideband squeezed light: Analytical formula (18 pages) , 2005, quant-ph/0512073.

[41]  Masahide Sasaki,et al.  Quantum receivers with squeezing and photon-number-resolving detectors for M -ary coherent state discrimination , 2013, 1302.2691.

[42]  N. Treps,et al.  Generation and characterization of multimode quantum frequency combs , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[43]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[44]  James C. Gates,et al.  On-chip, photon-number-resolving, telecom-band detectors for scalable photonic information processing , 2012, CLEO 2012.

[45]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[46]  Charles C. Harb,et al.  Optical entanglement of co-propagating modes , 2009 .

[47]  Barry C Sanders,et al.  Direct observation of nonclassical photon statistics in parametric down-conversion. , 2004, Physical review letters.

[48]  Marco Genovese,et al.  Mode reconstruction of a light field by multiphoton statistics , 2013 .

[49]  Olivier Pfister,et al.  One-way quantum computing in the optical frequency comb. , 2008, Physical review letters.

[50]  M. Rubin,et al.  THEORY OF TWO-PHOTON ENTANGLEMENT FOR SPONTANEOUS PARAMETRIC DOWN-CONVERSION DRIVEN BY A NARROW PUMP PULSE , 1997 .

[51]  Masahide Sasaki,et al.  Binary projective measurement via linear optics and photon counting. , 2006, Physical review letters.

[52]  P. Knight,et al.  Introductory Quantum Optics: Frontmatter , 2004 .

[53]  Taro Itatani,et al.  Photon number resolving detection with high speed and high quantum efficiency , 2009 .

[54]  J. Wheeler,et al.  Oscillations in photon distribution of squeezed states and interference in phase space , 1987, Nature.

[55]  C. Adami,et al.  Towards photostatistics from photon-number discriminating detectors , 2003, quant-ph/0310161.

[56]  A. Weiner Femtosecond pulse shaping using spatial light modulators , 2000 .

[57]  S. Schiller,et al.  Measurement of the quantum states of squeezed light , 1997, Nature.

[58]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[59]  Sae Woo Nam,et al.  Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum , 2010, 1004.2727.

[60]  So-Young Baek,et al.  Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion , 2008 .

[61]  Akira Tanaka,et al.  Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals. , 2012, Optics express.