Conservative Space and Time Regularizations for the ICON Model

[1]  Hui Wan Developing and testing a hydrostatic atmospheric dynamical core on triangular grids , 2009 .

[2]  Influence of the dispersive and dissipative scales alpha and beta on the energy spectrum of the Navier-Stokes alphabeta equations. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Francis X. Giraldo,et al.  A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases , 2008, J. Comput. Phys..

[4]  Darryl D. Holm,et al.  Implementation of the LANS-α turbulence model in a primitive equation ocean model , 2007, J. Comput. Phys..

[5]  M. Hecht,et al.  Efficient form of the LANS-α turbulence model in a primitive-equation ocean model , 2007, J. Comput. Phys..

[6]  Sebastian Reich,et al.  A regularization approach for a vertical‐slice model and semi‐Lagrangian Störmer–Verlet time stepping , 2007 .

[7]  M. Gurtin,et al.  Turbulent kinetic energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes alpha theory. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  E. Titi,et al.  A study of the Navier-Stokes-α model for two-dimensional turbulence , 2007, physics/0702196.

[9]  Semi‐implicit methods, nonlinear balance, and regularized equations , 2007 .

[10]  Nigel Wood,et al.  A time-staggered semi-Lagrangian discretization of the rotating shallow-water equations , 2006 .

[11]  Nigel Wood,et al.  Analysis of the response to orographic forcing of a time‐staggered semi‐Lagrangian discretization of the rotating shallow‐water equations , 2006 .

[12]  Sebastian Reich,et al.  Linearly implicit time stepping methods for numerical weather prediction , 2006 .

[13]  L. Berselli,et al.  Mathematics of Large Eddy Simulation of Turbulent Flows , 2005 .

[14]  T. Ringler,et al.  Analysis of Discrete Shallow-Water Models on Geodesic Delaunay Grids with C-Type Staggering , 2005 .

[15]  Darryl D. Holm,et al.  Baroclinic Instabilities of the Two-Layer Quasigeostrophic Alpha Model , 2005 .

[16]  Luca Bonaventura,et al.  A semi‐implicit method conserving mass and potential vorticity for the shallow water equations on the sphere , 2005 .

[17]  Darryl D. Holm Taylor's Hypothesis, Hamilton's Principle, and the LANS-α Model for Computing Turbulence , 2005 .

[18]  Beth A. Wingate,et al.  The Maximum Allowable Time Step for the Shallow Water α Model and Its Relation to Time-Implicit Differencing , 2004 .

[19]  Luis Kornblueh,et al.  The atmospheric general circulation model ECHAM5 Part II: Sensitivity of simulated climate to horizontal and vertical resolution , 2004 .

[20]  Jean-Luc Guermond,et al.  An interpretation of the Navier-Stokes-alpha model as a frame-indifferent Leray regularization , 2003 .

[21]  Jerrold E. Marsden,et al.  Numerical simulations of the Lagrangian averaged Navier-Stokes equations for homogeneous isotropic turbulence , 2003 .

[22]  Darryl D. Holm,et al.  Regularization modeling for large-eddy simulation , 2002, nlin/0206026.

[23]  National Center for Atmospheric Research,et al.  An alternative interpretation for the Holm alpha model , 2002, physics/0207056.

[24]  Michael Buchhold,et al.  The Operational Global Icosahedral-Hexagonal Gridpoint Model GME: Description and High-Resolution Tests , 2002 .

[25]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[26]  Enhancement of the inverse-cascade of energy in the two-dimensional Lagrangian-averaged Navier-Stokes equations , 2001 .

[27]  Darryl D. Holm Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion , 1999, chao-dyn/9903034.

[28]  Jerrold E. Marsden,et al.  The Euler-Poincaré Equations in Geophysical Fluid Dynamics , 1999, chao-dyn/9903035.

[29]  Darryl D. Holm,et al.  Direct numerical simulations of the Navier–Stokes alpha model , 1999, Physica D: Nonlinear Phenomena.

[30]  F. Mesinger,et al.  A global shallow‐water model using an expanded spherical cube: Gnomonic versus conformal coordinates , 1996 .

[31]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[32]  Marie Farge,et al.  Wave-vortex dynamics in rotating shallow water , 1989, Journal of Fluid Mechanics.

[33]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[34]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[35]  D. G. Andrews,et al.  An exact theory of nonlinear waves on a Lagrangian-mean flow , 1978, Journal of Fluid Mechanics.

[36]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .