NMDA and AMPA receptors: old channels, new tricks

[1]  T. Soderling,et al.  Regulatory mechanisms of AMPA receptors in synaptic plasticity , 2007, Nature Reviews Neuroscience.

[2]  L. Mao,et al.  Regulation of mitogen‐activated protein kinases by glutamate receptors , 2007, Journal of neurochemistry.

[3]  D. Choquet,et al.  NMDA receptor surface mobility depends on NR2A-2B subunits , 2006, Proceedings of the National Academy of Sciences.

[4]  Roberto Malinow,et al.  Increased Expression of the Immediate-Early Gene Arc/Arg3.1 Reduces AMPA Receptor-Mediated Synaptic Transmission , 2006, Neuron.

[5]  Anastassios V. Tzingounis,et al.  Arc/Arg3.1: Linking Gene Expression to Synaptic Plasticity and Memory , 2006, Neuron.

[6]  Jing Wu,et al.  Arc/Arg3.1 Mediates Homeostatic Synaptic Scaling of AMPA Receptors , 2006, Neuron.

[7]  Lars Funke,et al.  Synapse-Specific and Developmentally Regulated Targeting of AMPA Receptors by a Family of MAGUK Scaffolding Proteins , 2006, Neuron.

[8]  Shaomin Li,et al.  Distinct Roles for Ras-Guanine Nucleotide-Releasing Factor 1 (Ras-GRF1) and Ras-GRF2 in the Induction of Long-Term Potentiation and Long-Term Depression , 2006, The Journal of Neuroscience.

[9]  S. Finkbeiner,et al.  AMPA receptors regulate transcription of the plasticity-related immediate-early gene Arc , 2006, Nature Neuroscience.

[10]  T. Soderling,et al.  Activity-Dependent Dendritic Arborization Mediated by CaM-Kinase I Activation and Enhanced CREB-Dependent Transcription of Wnt-2 , 2006, Neuron.

[11]  Mark Farrant,et al.  Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond , 2006, Current Opinion in Neurobiology.

[12]  G. Collingridge,et al.  Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation , 2006, Nature Neuroscience.

[13]  Y. Ben-Ari,et al.  Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal‐regulated kinases (ERK) activity in cultured rat hippocampal neurons , 2006, The Journal of physiology.

[14]  C. Duarte,et al.  Excitotoxicity mediated by Ca2+-permeable GluR4-containing AMPA receptors involves the AP-1 transcription factor , 2006, Cell Death and Differentiation.

[15]  L. Feig,et al.  Age-dependent Participation of Ras-GRF Proteins in Coupling Calcium-permeable AMPA Glutamate Receptors to Ras/Erk Signaling in Cortical Neurons* , 2006, Journal of Biological Chemistry.

[16]  S. Finkbeiner,et al.  Splice Variants of the NR1 Subunit Differentially Induce NMDA Receptor-Dependent Gene Expression , 2006, The Journal of Neuroscience.

[17]  D. Choquet,et al.  NMDA receptor surface mobility depends on NR 2 A-2 B subunits Cognet , and Daniel Choquet , 2006 .

[18]  H. Adesnik,et al.  TARP γ-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity , 2005, Nature Neuroscience.

[19]  R. Malinow,et al.  NMDA Receptor Subunit Composition Controls Synaptic Plasticity by Regulating Binding to CaMKII , 2005, Neuron.

[20]  S. Josselyn,et al.  CREB, synapses and memory disorders: past progress and future challenges. , 2005, Current drug targets. CNS and neurological disorders.

[21]  S. Dudek,et al.  Late-phase long-term potentiation: getting to the nucleus , 2005, Nature Reviews Neuroscience.

[22]  J. D. McGaugh,et al.  Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. Sheng,et al.  Differential Roles of NR2A- and NR2B-Containing NMDA Receptors in Ras-ERK Signaling and AMPA Receptor Trafficking , 2005, Neuron.

[24]  N. Hardingham,et al.  Nuclear Ca2+ and the cAMP Response Element-Binding Protein Family Mediate a Late Phase of Activity-Dependent Neuroprotection , 2005, The Journal of Neuroscience.

[25]  David A. Richards,et al.  Glutamate induces the rapid formation of spine head protrusions in hippocampal slice cultures , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Wade Morishita,et al.  Generation of Silent Synapses by Acute In Vivo Expression of CaMKIV and CREB , 2005, Neuron.

[27]  P. De Camilli,et al.  A Novel Pathway for Presynaptic Mitogen-Activated Kinase Activation via AMPA Receptors , 2005, The Journal of Neuroscience.

[28]  Tiffany Lyle,et al.  Modulation of NMDA Receptor-Dependent Calcium Influx and Gene Expression Through EphB Receptors , 2005 .

[29]  Q. Tang,et al.  A Novel Ca2+-Independent Signaling Pathway to Extracellular Signal-Regulated Protein Kinase by Coactivation of NMDA Receptors and Metabotropic Glutamate Receptor 5 in Neurons , 2004, The Journal of Neuroscience.

[30]  P. Seeburg,et al.  The AMPA Receptor Subunits GluR-A and GluR-B Reciprocally Modulate Spinal Synaptic Plasticity and Inflammatory Pain , 2004, Neuron.

[31]  A. Marini,et al.  AMPA protects cultured neurons against glutamate excitotoxicity through a phosphatidylinositol 3‐kinase‐dependent activation in extracellular signal‐regulated kinase to upregulate BDNF gene expression , 2004, Journal of neurochemistry.

[32]  M. Sheng,et al.  Subunit Rules Governing the Sorting of Internalized AMPA Receptors in Hippocampal Neurons , 2004, Neuron.

[33]  Nicholas R Wall,et al.  Regulation of Dendritic Protein Synthesis by Miniature Synaptic Events , 2004, Science.

[34]  J. Sweatt,et al.  Mitogen-activated protein kinases in synaptic plasticity and memory , 2004, Current Opinion in Neurobiology.

[35]  M. Sheng,et al.  Role of NMDA Receptor Subtypes in Governing the Direction of Hippocampal Synaptic Plasticity , 2004, Science.

[36]  Michael Häusser,et al.  A proportional but slower NMDA potentiation follows AMPA potentiation in LTP , 2004, Nature Neuroscience.

[37]  E. Lo,et al.  Developmentally regulated role for Ras‐GRFs in coupling NMDA glutamate receptors to Ras, Erk and CREB , 2004, The EMBO journal.

[38]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[39]  Q. Tang,et al.  Glutamate signaling to ras-MAPK in striatal neurons , 2004, Molecular Neurobiology.

[40]  Joseph E LeDoux,et al.  Structural plasticity and memory , 2004, Nature Reviews Neuroscience.

[41]  M. Fanselow,et al.  NF-κB functions in synaptic signaling and behavior , 2003, Nature Neuroscience.

[42]  J. E. Huettner Spine-Tingling Excitement from Glutamate Receptors , 2003, Science's STKE.

[43]  Yehezkel Ben-Ari,et al.  The NMDA Receptor Is Coupled to the ERK Pathway by a Direct Interaction between NR2B and RasGRF1 , 2003, Neuron.

[44]  David Baltimore,et al.  NF-κB functions in synaptic signaling and behavior , 2003, Nature Neuroscience.

[45]  Carlo Sala,et al.  Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2 , 2003, Nature.

[46]  H. Bading,et al.  Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation , 2003, Current Opinion in Neurobiology.

[47]  R. Nicoll,et al.  Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins , 2003, The Journal of cell biology.

[48]  H. Bading,et al.  Neuronal activity‐dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5 , 2003, Journal of neurochemistry.

[49]  R. Dolmetsch Excitation-Transcription Coupling: Signaling by Ion Channels to the Nucleus , 2003, Science's STKE.

[50]  Angus C. Nairn,et al.  NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling , 2003, Nature Neuroscience.

[51]  Eric C. Griffith,et al.  Regulation of transcription factors by neuronal activity , 2002, Nature Reviews Neuroscience.

[52]  R. Nicoll,et al.  Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[53]  H. Bading,et al.  Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways , 2002, Nature Neuroscience.

[54]  J. Guzowski Insights into immediate‐early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches , 2002, Hippocampus.

[55]  A. West,et al.  Calcium regulation of neuronal gene expression , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Mark Farrant,et al.  NMDA receptor subunits: diversity, development and disease , 2001, Current Opinion in Neurobiology.

[57]  Michael E Greenberg,et al.  EphB Receptors Interact with NMDA Receptors and Regulate Excitatory Synapse Formation , 2000, Cell.

[58]  M. Fischer,et al.  Glutamate receptors regulate actin-based plasticity in dendritic spines , 2000, Nature Neuroscience.

[59]  M. V. Rossum,et al.  Activity Coregulates Quantal AMPA and NMDA Currents at Neocortical Synapses , 2000, Neuron.

[60]  S. J. Martin,et al.  Synaptic plasticity and memory: an evaluation of the hypothesis. , 2000, Annual review of neuroscience.

[61]  E. Shimizu,et al.  Genetic enhancement of learning and memory in mice , 1999, Nature.

[62]  Robert J. Williams,et al.  Ca2+-Permeable AMPA Receptors Induce Phosphorylation of cAMP Response Element-Binding Protein through a Phosphatidylinositol 3-Kinase-Dependent Stimulation of the Mitogen-Activated Protein Kinase Signaling Cascade in Neurons , 1999, The Journal of Neuroscience.

[63]  P. Sterling,et al.  AMPA Receptor Activates a G-Protein that Suppresses a cGMP-Gated Current , 1999, The Journal of Neuroscience.

[64]  M. Mishina,et al.  The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn , 1999, Nature.

[65]  Marco Capogna,et al.  Miniature synaptic events maintain dendritic spines via AMPA receptor activation , 1999, Nature Neuroscience.

[66]  M. Greenberg,et al.  Ca2+ channel-regulated neuronal gene expression. , 1998, Journal of neurobiology.

[67]  K. Deisseroth,et al.  Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons , 1998, Nature.

[68]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[69]  M. Sheng,et al.  Heterogeneity in the Molecular Composition of Excitatory Postsynaptic Sites during Development of Hippocampal Neurons in Culture , 1998, The Journal of Neuroscience.

[70]  Yizheng Wang,et al.  AMPA receptor-mediated regulation of a Gi-protein in cortical neurons , 1997, Nature.

[71]  L. Terenius,et al.  Characterization of NMDA- and AMPA-induced enhancement of AP-1 DNA binding activity in rat cerebellar granule cells , 1997, Brain Research.

[72]  Yizheng Wang,et al.  α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, but Not N-Methyl-D-aspartate, Activates Mitogen-activated Protein Kinase through G-protein βγ Subunits in Rat Cortical Neurons (*) , 1995, The Journal of Biological Chemistry.

[73]  Mario Roederer,et al.  Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR 2 , 2022 .