Exploring glycogen biosynthesis through Monte Carlo simulation.

[1]  Cheng Li,et al.  Diurnal changes of glycogen molecular structure in healthy and diabetic mice. , 2018, Carbohydrate polymers.

[2]  R. Gilbert,et al.  On the Role of Catabolic Enzymes in Biosynthetic Models of Glycogen Molecular Weight Distributions , 2017, ACS omega.

[3]  Cheng Li,et al.  Molecular-size dependence of glycogen enzymatic degradation and its importance for diabetes , 2016 .

[4]  Xiao-Yi Zeng,et al.  Liver glycogen in type 2 diabetic mice is randomly branched as enlarged aggregates with blunted glucose release , 2016, Glycoconjugate Journal.

[5]  Jialun Li,et al.  The Mechanism for Stopping Chain and Total-Molecule Growth in Complex Branched Polymers, Exemplified by Glycogen. , 2015, Biomacromolecules.

[6]  R. Murphy,et al.  Rat skeletal muscle glycogen degradation pathways reveal differential association of glycogen-related proteins with glycogen granules , 2015, Journal of Physiology and Biochemistry.

[7]  F. Warren,et al.  Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles , 2015, PloS one.

[8]  B. Schulz,et al.  Molecular structure of glycogen in diabetic liver , 2015, Glycoconjugate Journal.

[9]  E. Suzuki,et al.  Diversity of reaction characteristics of glucan branching enzymes and the fine structure of α-glucan from various sources. , 2014, Archives of biochemistry and biophysics.

[10]  F. Warren,et al.  Changes in glycogen structure over feeding cycle sheds new light on blood-glucose control. , 2014, Biomacromolecules.

[11]  M. Morell,et al.  A Parameterized Model of Amylopectin Synthesis Provides Key Insights into the Synthesis of Granular Starch , 2013, PloS one.

[12]  K. Loos,et al.  Synthesis of branched polysaccharides with tunable degree of branching. , 2013, Carbohydrate polymers.

[13]  E. Suzuki,et al.  Characterization of Starch and Glycogen Branching Enzymes from Various Sources , 2013 .

[14]  A. Depaoli-Roach,et al.  Glycogen and its metabolism: some new developments and old themes. , 2012, The Biochemical journal.

[15]  S. Perrier,et al.  Modeling highly branched structures: Description of the solution structures of dendrimers, polyglycerol, and glycogen , 2011 .

[16]  D. Stapleton,et al.  Molecular Structural Differences between Type-2-Diabetic and Healthy Glycogen , 2011, Biomacromolecules.

[17]  R. Gilbert,et al.  Molecular weight distributions of starch branches reveal genetic constraints on biosynthesis. , 2010, Biomacromolecules.

[18]  R. Gilbert,et al.  Characterization of branched polysaccharides using multiple-detection size separation techniques. , 2010, Journal of separation science.

[19]  Hsiao-Ping Hsu,et al.  Characteristic Length Scales and Radial Monomer Density Profiles of Molecular Bottle-Brushes: Simulation and Experiment , 2010 .

[20]  Angus A. Gray-Weale,et al.  Models for randomly hyperbranched polymers: Theory and simulation. , 2008, The Journal of chemical physics.

[21]  Angus A. Gray-Weale,et al.  Randomly hyperbranched polymers. , 2007, Physical review letters.

[22]  J. Wittmer,et al.  Intramolecular long-range correlations in polymer melts: the segmental size distribution and its moments. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Angus A. Gray-Weale,et al.  Theory of Multiple-Detection Size-Exclusion Chromatography of Complex Branched Polymers , 2007 .

[24]  Angus A. Gray-Weale,et al.  Interpreting size-exclusion data for highly branched biopolymers by reverse monte carlo simulations. , 2007, Biomacromolecules.

[25]  Pedro M Alzari,et al.  Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation , 2004, The EMBO journal.

[26]  J. Shearer,et al.  Novel Aspects of Skeletal Muscle Glycogen and Its Regulation During Rest and Exercise , 2004, Exercise and sport sciences reviews.

[27]  A. Hamielec,et al.  Size-exclusion chromatography-a review of calibration methodologies. , 2004, Journal of biochemical and biophysical methods.

[28]  Jean M. J. Fréchet,et al.  Dendrimers and other dendritic macromolecules: From building blocks to functional assemblies in nanoscience and nanotechnology , 2003 .

[29]  A. Blennow,et al.  Intermediary Glucan Structures Formed during Starch Granule Biosynthesis Are Enriched in Short Side Chains, a Dynamic Pulse Labeling Approach* , 2002, The Journal of Biological Chemistry.

[30]  H. Roman,et al.  Self-avoiding walks on Sierpinski lattices in two and three dimensions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  J. Jorgenson,et al.  A hybrid of exponential and gaussian functions as a simple model of asymmetric chromatographic peaks. , 2001, Journal of chromatography. A.

[32]  N. K. Matheson,et al.  α(1-4) Glucan chain disposition in models of α(1-4)(1-6) glucans: comparison with structural data for mammalian glycogen and waxy amylopectin , 1999 .

[33]  E. Meléndez-Hevia,et al.  The fractal structure of glycogen: A clever solution to optimize cell metabolism. , 1999, Biophysical journal.

[34]  M. Cascante,et al.  Physical constraints in the synthesis of glycogen that influence its structural homogeneity: a two-dimensional approach. , 1998, Biophysical journal.

[35]  M. Cascante,et al.  How did glycogen structure evolve to satisfy the requirement for rapid mobilization of glucose? A problem of physical constraints in structure building , 1997, Journal of Molecular Evolution.

[36]  H. Guan,et al.  Comparing the properties of Escherichia coli branching enzyme and maize branching enzyme. , 1997, Archives of biochemistry and biophysics.

[37]  Kurt Binder,et al.  Modeling polyethylene with the bond fluctuation model , 1997 .

[38]  K. Rybicka Glycosomes--the organelles of glycogen metabolism. , 1996, Tissue & cell.

[39]  W. Whelan,et al.  A new look at the biogenesis of glycogen , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[40]  E. Meléndez-Hevia,et al.  Optimization of molecular design in the evolution of metabolism: the glycogen molecule. , 1993, The Biochemical journal.

[41]  S. Sprang,et al.  Structure of maltoheptaose by difference Fourier methods and a model for glycogen. , 1982, Journal of molecular biology.

[42]  T. Wienker,et al.  Progressive myoclonus epilepsy , 1979, Human Genetics.

[43]  W. Whelan,et al.  A revision of the Meyer‐Bernfeld model of glycogen and amylopectin , 1970, FEBS letters.

[44]  J. Wanson,et al.  RABBIT SKELETAL MUSCLE GLYCOGEN , 1968, The Journal of cell biology.

[45]  N. Madsen,et al.  The binding of glycogen and phosphorylase. , 1958, The Journal of biological chemistry.

[46]  A. Striegel,et al.  Modern size-exclusion liquid chromatography : practice of gel permeation and gel filtration chromatography , 1979 .

[47]  R. Mahler Glycogen storage diseases , 1969 .