A Review of Heat Transfer in Nanofluids

Publisher Summary This chapter focuses on nanofluids, highlighting its uses and various mechanisms involved in its working. Modern nanotechnology has enabled the production of metallic or nonmetallic nanoparticles with average crystallite sizes below 100 nm. The mechanical, optical, electrical, magnetic, and thermal properties of nanoparticles are superior to those of conventional bulk materials with coarse grain structures. Nanofluids are a new class of nanotechnology-based heat transfer fluids engineered by dispersing nanometer-sized particles with typical length scales on the order of 1–100 nm in traditional heat transfer fluids. Due to their large surface area, less particle momentum, and high mobility, nanoparticles emerged as suitable candidates for suspending in fluids. Nanofluid are used in cooling and related technology overcoming the usual problems with common slurries such as sedimentation, clogging, increased pressure drop, erosion, and applicability to micro-channels. Nanofluids of ceramic and pure metallic particles have been produced by the conventional two-step method where the particles are first produced by methods such as IGC or chemical vapor deposition and then the particles are dispersed in the fluid using various methods such as physical dispersion and chemical dispersion methods where various techniques such as ultrasonic vibration, use of surfactants, or control of pH can be used. For measuring thermal conductivity of nanofluids, the very first need is to standardize the measurement techniques. The observed enhancement of effective thermal conductivity over that of the base fluid is often few times for nanofluid compared to what would have been given by usual micrometer-sized suspensions. The chapter also discusses issues, such as convection in nanofluids, boiling in nanofluids, studies on critical heat flux in pool boiling, and applications of nanofluids.

[1]  W. Roetzel,et al.  Measurement of heat-transfer coefficient and axial-dispersion coefficient using temperature oscillations , 1993 .

[2]  Q. Xue Model for effective thermal conductivity of nanofluids , 2003 .

[3]  W. Roetzel,et al.  Conceptions for heat transfer correlation of nanofluids , 2000 .

[4]  Satish G. Kandlikar,et al.  Fundamental issues related to flow boiling in minichannels and microchannels , 2002 .

[5]  D. Venerus,et al.  Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering , 2006 .

[6]  Y. Xuan,et al.  Aggregation structure and thermal conductivity of nanofluids , 2003 .

[7]  K. Leong,et al.  Investigations of thermal conductivity and viscosity of nanofluids , 2008 .

[8]  S. Phillpot,et al.  Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) , 2002 .

[9]  Rengasamy Ponnappan,et al.  Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An experimental study , 2007 .

[10]  J. Fish,et al.  Role of Brownian motion hydrodynamics on nanofluid thermal conductivity , 2006 .

[11]  Hongwei Xie,et al.  Thermal Conductivity of Suspensions Containing Nanosized SiC Particles , 2002 .

[12]  Yulong Ding,et al.  Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids , 2005 .

[13]  Yukihiro Tsukasaki,et al.  Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate , 1978 .

[14]  Thirumalachari Sundararajan,et al.  A cell model approach for thermal conductivity of nanofluids , 2008 .

[15]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[16]  Robert H. Davis The effective thermal conductivity of a composite material with spherical inclusions , 1986 .

[17]  Shi-Chune Yao,et al.  Correlation of thermal conductivities of unidirectional fibrous composites using local fractal techniques , 1991 .

[18]  W. Roetzel,et al.  Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity , 1995 .

[19]  Mansoo Choi,et al.  Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities , 2003 .

[20]  E. N. Sieder,et al.  Heat Transfer and Pressure Drop of Liquids in Tubes , 1936 .

[21]  Nicolas Galanis,et al.  Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids , 2007 .

[22]  Sanjeeva Witharana,et al.  Boiling of refrigerants on enhanced surfaces and boiling of nanofluids , 2003 .

[23]  P. Dutta,et al.  Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study , 2000 .

[24]  Sydney Ross,et al.  Colloidal Systems and Interfaces , 1988 .

[25]  Y. Yang,et al.  Pool Boiling of Dilute Surfactant Solutions , 1983 .

[26]  D. M. Mills,et al.  High performance microchannel heat exchanger for cooling high heat load x-ray optical elements , 1992 .

[27]  J. Brady,et al.  The effective conductivity of random suspensions of spherical particles , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[28]  P. Meakin,et al.  Effect of aggregation on thermal conduction in colloidal nanofluids , 2006 .

[29]  K. Khanafer,et al.  BUOYANCY-DRIVEN HEAT TRANSFER ENHANCEMENT IN A TWO-DIMENSIONAL ENCLOSURE UTILIZING NANOFLUIDS , 2003 .

[30]  Sidney Yip,et al.  Mechanism of thermal transport in dilute nanocolloids. , 2007, Physical review letters.

[31]  A. Majumdar,et al.  Microscale energy transport , 1998 .

[32]  Stephen U. S. Choi,et al.  Role of Brownian motion in the enhanced thermal conductivity of nanofluids , 2004 .

[33]  Amin Behzadmehr,et al.  Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach , 2007 .

[34]  G. Peterson,et al.  Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids) , 2006 .

[35]  G. Batchelor The effect of Brownian motion on the bulk stress in a suspension of spherical particles , 1977, Journal of Fluid Mechanics.

[36]  Konstantinos Kakosimos,et al.  Thermal Conductivity of Nanofluids – Experimental and Theoretical , 2006 .

[37]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[38]  R. Aris On the dispersion of a solute in a fluid flowing through a tube , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[39]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[40]  C. T. Nguyen,et al.  Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system , 2007 .

[41]  Reiyu Chein,et al.  Analysis of microchannel heat sink performance using nanofluids , 2005 .

[42]  K. Leong,et al.  A model for the thermal conductivity of nanofluids – the effect of interfacial layer , 2006 .

[43]  E. Garboczi,et al.  Interfacial transport in porous media: Application to dc electrical conductivity of mortars , 1995 .

[44]  Pozhar Structure and dynamics of nanofluids: theory and simulations to calculate viscosity , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  M. Turker Effect of production parameters on the structure and morphology of Ag nanopowders produced by inert gas condensation , 2004 .

[46]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[47]  G. Taylor Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[48]  Q. Xue Model for thermal conductivity of carbon nanotube-based composites , 2005 .

[49]  Heinrich Rohrer,et al.  The nanoworld: chances and challenges , 1996 .

[50]  Huaqing Xie,et al.  Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture , 2005 .

[51]  B. Wang,et al.  A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles , 2003 .

[52]  Arthur E. Bergles,et al.  Boiling and Evaporation in Small Diameter Channels , 2003 .

[53]  Z. Han,et al.  Thermal conductivity enhancement in water-in-FC72 nanoemulsion fluids , 2006 .

[54]  C. Choi,et al.  Soret and Dufour effects on convective instabilities in binary nanofluids for absorption application , 2007 .

[55]  Nandy Putra,et al.  Pool boiling of nano-fluids on horizontal narrow tubes , 2003 .

[56]  C. T. Nguyen,et al.  Heat transfer behaviours of nanofluids in a uniformly heated tube , 2004 .

[57]  Xing Zhang,et al.  Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles , 2006 .

[58]  R. Pober,et al.  Nanotubes in liquids : Effective thermal conductivity , 2006 .

[59]  Soon-Heung Chang,et al.  Boiling heat transfer performance and phenomena of Al2O 3-water nano-fluids from a plain surface in a pool , 2004 .

[60]  Yansheng Yin,et al.  EFFECTS OF NANOPARTICLE CLUSTERING AND ALIGNMENT ON THERMAL CONDUCTIVITIES OF FE3O4 AQUEOUS NANOFLUIDS , 2006 .

[61]  Y. Ahn,et al.  Investigation on characteristics of thermal conductivity enhancement of nanofluids , 2006 .

[62]  P. V. Danckwerts Continuous flow systems , 1953 .

[63]  Boming Yu,et al.  A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles , 2006 .

[64]  D. Jeffrey,et al.  Conduction through a random suspension of spheres , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[65]  R. Tiwari,et al.  HEAT TRANSFER AUGMENTATION IN A TWO-SIDED LID-DRIVEN DIFFERENTIALLY HEATED SQUARE CAVITY UTILIZING NANOFLUIDS , 2007 .

[66]  Louis Gosselin,et al.  Combined “heat transfer and power dissipation” optimization of nanofluid flows , 2004 .

[67]  Dongsik Kim,et al.  Thermal Conductivity of Metal-Oxide Nanofluids: Particle Size Dependence and Effect of Laser Irradiation , 2007 .

[68]  Sarit K. Das,et al.  Heat Transfer in Nanofluids—A Review , 2006 .

[69]  J. Eastman,et al.  Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles , 1999 .

[70]  B. Ku,et al.  Stability and thermal conductivity characteristics of nanofluids , 2007 .

[71]  Roger T. Bonnecaze,et al.  A method for determining the effective conductivity of dispersions of particles , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[72]  C. T. Nguyen,et al.  Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids , 2004 .

[73]  C. T. Nguyen,et al.  Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties , 2006 .

[74]  J. Buongiorno Convective Transport in Nanofluids , 2006 .

[75]  Jing Liu,et al.  Nano liquid-metal fluid as ultimate coolant , 2007 .

[76]  J. Overbeek,et al.  The rate of coagulation as a measure of the stability of silver iodide sols , 1954 .

[77]  H. Hong,et al.  Enhanced thermal conductivity by the magnetic field in heat transfer nanofluids containing carbon nanotube , 2007 .

[78]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[79]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[80]  P. F. Vassallo,et al.  Pool boiling heat transfer experiments in silica–water nano-fluids , 2004 .

[81]  J. H. Kim,et al.  Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer , 2003 .

[82]  R. Pease,et al.  High-performance heat sinking for VLSI , 1981, IEEE Electron Device Letters.

[83]  Q. Xue,et al.  Model for the effective thermal conductivity of carbon nanotube composites , 2006, Nanotechnology.

[84]  A. Rao,et al.  Continuous production of aligned carbon nanotubes: a step closer to commercial realization , 1999 .

[85]  Chi-Chuan Wang,et al.  Enhancement of thermal conductivity with carbon nanotube for nanofluids , 2005 .

[86]  Akhlesh Lakhtakia,et al.  The Handbook of Nanotechnology. Nanometer Structures: Theory, Modeling, and Simulation , 2004 .

[87]  J. Turkevich,et al.  Coagulation of Colloidal Gold , 2002 .

[88]  John R. Thome,et al.  Heat Transfer Model for Evaporation in Microchannels, Part I: Presentation of the Model , 2004 .

[89]  Sheng-Chung Tzeng,et al.  Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures , 2006 .

[90]  Guillaume Polidori,et al.  A note on heat transfer modelling of Newtonian nanofluids in laminar free convection , 2007 .

[91]  David Y. H. Pui,et al.  Experimental investigation of scaling laws for electrospraying: Dielectric constant effect , 1997 .

[92]  Huaqing Xie,et al.  Thermal conductivity enhancement of suspensions containing nanosized alumina particles , 2002 .

[93]  Clement Kleinstreuer,et al.  Laminar nanofluid flow in microheat-sinks , 2005 .

[94]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[95]  A. Akbarinia Impacts of nanofluid flow on skin friction factor and Nusselt number in curved tubes with constant mass flow , 2008 .

[96]  W. Roetzel,et al.  TEMPERATURE DEPENDENCE OF THERMAL CONDUCTIVITY ENHANCEMENT FOR NANOFLUIDS , 2003 .

[97]  C. Choi,et al.  Analysis of convective instability and heat transfer characteristics of nanofluids , 2004 .

[98]  M. Sigrist Air monitoring by spectroscopic techniques , 1994 .

[99]  R. Prasher,et al.  Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids , 2004 .

[100]  K. Gubbins,et al.  QUASIHYDRODYNAMICS OF NANOFLUID MIXTURES , 1997 .

[101]  G. Peterson,et al.  The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids , 2007 .

[102]  Chun Yang,et al.  Determination of the effective thermal diffusivity of nanofluids by the double hot-wire technique , 2006 .

[103]  Yuanhua Lin,et al.  Interface effect on thermal conductivity of carbon nanotube composites , 2004 .

[104]  Q. Xue,et al.  A model of thermal conductivity of nanofluids with interfacial shells , 2005 .

[105]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[106]  Lei Gao,et al.  Differential effective medium theory for thermal conductivity in nanofluids , 2006 .

[107]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[108]  R. Feynman There’s plenty of room at the bottom , 1992, Journal of Microelectromechanical Systems.

[109]  Ping-Hei Chen,et al.  Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance , 2004 .

[110]  E. Grulke,et al.  Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow , 2005 .

[111]  Marc J. Assael,et al.  Thermal Conductivity Enhancement in Aqueous Suspensions of Carbon Multi-Walled and Double-Walled Nanotubes in the Presence of Two Different Dispersants , 2005 .

[112]  Yulong Ding,et al.  Particle migration in a flow of nanoparticle suspensions , 2005 .

[113]  Chi-Chuan Wang,et al.  Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method , 2006 .

[114]  S. Cheng,et al.  The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures , 1969 .

[115]  Ulrich Platt,et al.  Differential optical absorption spectroscopy (DOAS) , 1994 .

[116]  Somchai Wongwises,et al.  A critical review of convective heat transfer of nanofluids , 2007 .

[117]  Gang Chen,et al.  Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles , 1996 .

[118]  Michael Z Hu,et al.  Transport properties of nanosystems: viscosity of nanofluids confined in slit nanopores. , 2002, Journal of nanoscience and nanotechnology.

[119]  Qiang Li,et al.  Stochastic thermal transport of nanoparticle suspensions , 2006 .

[120]  E. Grulke,et al.  Thermal and rheological properties of carbon nanotube-in-oil dispersions , 2006 .

[121]  W. Roetzel,et al.  Pool boiling characteristics of nano-fluids , 2003 .

[122]  Tae-Keun Hong,et al.  Study of the enhanced thermal conductivity of Fe nanofluids , 2005 .

[123]  Yulong Ding,et al.  Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) , 2006 .

[124]  C. Chon,et al.  Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement , 2005 .

[125]  Sarit K. Das,et al.  Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects , 2003 .

[126]  J. R. Abbott,et al.  A constitutive equation for concentrated suspensions that accounts for shear‐induced particle migration , 1992 .

[127]  Kenneth D. Kihm,et al.  Thermal Conductivity Enhancement of Nanofluids by Brownian Motion , 2005 .

[128]  Wenhua Yu,et al.  The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model , 2003 .

[129]  Simon R. Phillpot,et al.  Effect of liquid layering at the liquid–solid interface on thermal transport , 2004 .

[130]  Fei Ai,et al.  Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid , 2002 .

[131]  L. Burmeister Convective heat transfer , 1983 .

[132]  A micro-convection model for thermal conductivity of nanofluids , 2005 .

[133]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .

[134]  Young I Cho,et al.  HYDRODYNAMIC AND HEAT TRANSFER STUDY OF DISPERSED FLUIDS WITH SUBMICRON METALLIC OXIDE PARTICLES , 1998 .

[135]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[136]  Tian Jian Lu,et al.  Analysis of microchannel heat sinks for electronics cooling , 2002 .

[137]  Somchai Wongwises,et al.  Critical review of heat transfer characteristics of nanofluids , 2007 .

[138]  C. Nan,et al.  A simple model for thermal conductivity of carbon nanotube-based composites , 2003 .

[139]  R. Prasher,et al.  Thermal conductivity of nanoscale colloidal solutions (nanofluids). , 2005, Physical review letters.

[140]  Prasanta Kumar Das,et al.  Synthesis and characterization of nanofluid for advanced heat transfer applications , 2006 .

[141]  Saeed Zeinali Heris,et al.  Experimental investigation of oxide nanofluids laminar flow convective heat transfer , 2006 .

[142]  Satish G. Kandlikar Heat Transfer Mechanisms During Flow Boiling in Microchannels , 2004 .

[143]  Yulong Ding,et al.  Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions , 2004 .

[144]  E. Giannelis,et al.  Mechanism of heat transport in nanofluids , 2007 .

[145]  Boming Yu,et al.  The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles , 2007 .

[146]  S. Ju,et al.  Theory of thermal conductance in carbon nanotube composites , 2006 .

[147]  H. Brinkman The Viscosity of Concentrated Suspensions and Solutions , 1952 .

[148]  S. Kabelac,et al.  HEAT TRANSFER MECHANISMS IN NANOFLUIDS -- EXPERIMENTS AND THEORY -- , 2006 .

[149]  A. B. Duncan,et al.  Review of Microscale Heat Transfer , 1994 .

[150]  D. Cahill,et al.  Thermal conductivity of nanoparticle suspensions , 2006 .

[151]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[152]  Shih-Yuan Lu,et al.  Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity , 1996 .

[153]  S. Tzeng,et al.  Heat transfer enhancement of nanofluids in rotary blade coupling of four-wheel-drive vehicles , 2005 .

[154]  P. C. Hiemenz,et al.  Principles of colloid and surface chemistry , 1977 .

[155]  Huaqing Xie,et al.  Effective thermal conductivity of nanofluids containing spherical nanoparticles , 2005 .

[156]  K. Leong,et al.  Enhanced thermal conductivity of TiO2—water based nanofluids , 2005 .

[157]  D. U. Rosenberg,et al.  Axial dispersion for turbulent flow with a large radial heat flux , 1990 .

[158]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .

[159]  G. P. Peterson,et al.  Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions (nanofluids) , 2007 .

[160]  D. R. Oliver The effect of natural convection on viscous-flow heat transfer in horizontal tubes , 1962 .

[161]  Yulong Ding,et al.  Formulation of nanofluids for natural convective heat transfer applications , 2005 .

[162]  Tae-Keun Hong,et al.  Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles , 2006 .

[163]  Y. Xuan,et al.  Heat transfer enhancement of nanofluids , 2000 .

[164]  A. Mujumdar,et al.  Heat transfer characteristics of nanofluids: a review , 2007 .

[165]  Xianfan Xu,et al.  Thermal Conductivity of Nanoparticle -Fluid Mixture , 1999 .

[166]  Haifeng Zhu,et al.  A novel one-step chemical method for preparation of copper nanofluids. , 2004, Journal of colloid and interface science.

[167]  M. Kaviany Principles of heat transfer in porous media , 1991 .

[168]  W. Roetzel,et al.  Natural convection of nano-fluids , 2003 .