Using Genetic Algorithms to Evolve Behavior in Cellular Automata

It is an unconventional computation approach to evolve solutions instead of calculating them. Although using evolutionary computation in computer science dates back to the 1960s, using an evolutionary approach to program other algorithms is not that well known. In this paper a genetic algorithm is used to evolve behavior in cellular automata. It shows how this approach works for different topologies and neighborhood shapes. Some different one dimensional neighborhood shapes are investigated with the genetic algorithm and yield surprisingly good results.

[1]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[2]  Thomas Bäck,et al.  Evolving Transition Rules for Multi Dimensional Cellular Automata , 2004, ACRI.

[3]  Dipl. Ing. Karl Heinz Kellermayer NUMERISCHE OPTIMIERUNG VON COMPUTER-MODELLEN MITTELS DER EVOLUTIONSSTRATEGIE Hans-Paul Schwefel Birkhäuser, Basel and Stuttgart, 1977 370 pages Hardback SF/48 ISBN 3-7643-0876-1 , 1977 .

[4]  Hans-Paul Schwefel,et al.  Evolution and Optimum Seeking: The Sixth Generation , 1993 .

[5]  M Mitchell,et al.  The evolution of emergent computation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Ingo Rechenberg,et al.  Evolutionsstrategie '94 , 1994, Werkstatt Bionik und Evolutionstechnik.

[7]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[8]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[9]  F. H. Bennett,et al.  Discovery by genetic programming of a cellular automata rule that is better than any known rule for the majority classification problem , 1996 .

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[12]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[13]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[14]  John R. Koza,et al.  Genetic Programming IV: Routine Human-Competitive Machine Intelligence , 2003 .

[15]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[16]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[17]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[18]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[19]  Thomas Bäck,et al.  Using a genetic algorithm to evolve behavior in multi dimensional cellular automata: emergence of behavior , 2005, GECCO '05.

[20]  Melanie Mitchell,et al.  Evolving cellular automata to perform computations: mechanisms and impediments , 1994 .

[21]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[22]  Thomas Bäck,et al.  Inverse Design of Cellular Automata by Genetic Algorithms: An Unconventional Programming Paradigm , 2004, UPP.