Bit Complexity of Computing Solutions for Symmetric Hyperbolic Systems of PDEs with Guaranteed Precision

We establish upper bounds of bit complexity of computing solution operators for symmetric hyperbolic systems of PDEs. Here we continue the research started in in our revious publications where computability, in the rigorous sense of computable analysis, has been established for solution operators of Cauchy and dissipative boundary-value problems for such systems.

[1]  V. Selivanov,et al.  Fields of algebraic numbers computable in polynomial time. I , 2020, Algebra i logika.

[2]  Klaus Weihrauch,et al.  A Tutorial on Computable Analysis , 2008 .

[3]  Annabel Sebag ED , 2009, SIGGRAPH '09.

[4]  Andreas Knobel,et al.  Constructive λ-models , 1992 .

[5]  D. C. Dodder R-Matrix Analysis , 1976 .

[6]  Ye.G. D'yakonov,et al.  Introduction to the theory of difference schemes , 1964 .

[7]  R. Loos Computing in Algebraic Extensions , 1983 .

[8]  Alkiviadis G. Akritas,et al.  Elements of Computer Algebra with Applications , 1989 .

[9]  V. L. Selivanov,et al.  On Constructive number fields and computability of solutions of PDEs , 2017 .

[10]  Fritz John,et al.  Lectures on advanced numerical analysis , 1967 .

[11]  Martin Ziegler,et al.  Computational Complexity of Real Powering and Improved Solving Linear Differential Equations , 2019, CSR.

[12]  Douglas A. Cenzer,et al.  Polynomial-Time versus Recursive Models , 1991, Ann. Pure Appl. Log..

[13]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[14]  Klaus Weihrauch,et al.  Computable Analysis , 2005, CiE.

[15]  Stephen Smale,et al.  On the topology of algorithms, I , 1987, J. Complex..

[16]  Martin Ziegler,et al.  A Computable Spectral Theorem , 2000, CCA.

[17]  Khuram Hussain Press , 2019, Keywords in Radical Philosophy and Education.

[18]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[19]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[20]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[21]  F. Rellich,et al.  Störungstheorie der Spektralzerlegung , 1937 .

[22]  Victor L. Selivanov,et al.  Bit Complexity of Computing Solutions for Symmetric Hyperbolic Systems of PDEs (Extended Abstract) , 2018, CiE.

[23]  K. Friedrichs Symmetric hyperbolic linear differential equations , 1954 .

[24]  Victor L. Selivanov,et al.  Computing Solution Operators of Boundary-value Problems for Some Linear Hyperbolic Systems of PDEs , 2013, Log. Methods Comput. Sci..

[25]  Martin Ziegler Real computation with least discrete advice: A complexity theory of nonuniform computability with applications to effective linear algebra , 2012, Ann. Pure Appl. Log..

[26]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.

[27]  溝畑 茂,et al.  The theory of partial differential equations , 1973 .

[28]  Philip G. Johnson Cornell University , 1897, The Journal of comparative medicine and veterinary archives.

[29]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[30]  Zhou Jian-Ping On the degree of extensions generated by finitely many algebraic numbers , 1990 .

[31]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[32]  Victor Y. Pan,et al.  The bit-complexity of discrete solutions of partial differential equations: Compact multigrid , 1990 .

[33]  Chee-Keng Yap,et al.  Analytic Root Clustering: A Complete Algorithm Using Soft Zero Tests , 2013, CiE.

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  Bruno Buchberger,et al.  Computer algebra symbolic and algebraic computation , 1982, SIGS.

[36]  A. Kulikovskii,et al.  Mathematical Aspects of Numerical Solution of Hyperbolic Systems , 1998, physics/9807053.

[37]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[38]  Victor Y. Pan,et al.  The complexity of the matrix eigenproblem , 1999, STOC '99.

[39]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[40]  P. E. Alaev,et al.  Fields of Algebraic Numbers Computable in Polynomial Time. I , 2020, Algebra i logika.

[41]  D. Prowe Berlin , 1855, Journal of public health, and sanitary review.

[42]  Victor L. Selivanov,et al.  Polynomial-Time Presentations of Algebraic Number Fields , 2018, CiE.

[43]  V. A. Vasil'ev,et al.  Braid group cohomologies and algorithm complexity , 1988 .

[44]  K. Weirauch Computational complexity on computable metric spaces , 2003 .

[45]  P. E. Alaev Existence and Uniqueness of Structures Computable in Polynomial Time , 2016 .

[46]  Victor L. Selivanov,et al.  Computing the Solution Operators of Symmetric Hyperbolic Systems of PDE , 2009, J. Univers. Comput. Sci..

[47]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[48]  Fayette County Moscow , 2021, Urban Studies.

[49]  L. Trefethen Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations , 1996 .

[50]  G. E. Collins,et al.  Real Zeros of Polynomials , 1983 .