Selection of objective function in genome scale flux balance analysis for process feed development in antibiotic production.

[1]  K. O'Brien,et al.  Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. , 1992, Gene.

[2]  M. Bushell,et al.  Estimation of the kinetic constants and elucidation of trends in growth and erythromycin production in batch and continuous cultures of Saccharopolyspora erythraea using curve-fitting techniques. , 1993, Enzyme and microbial technology.

[3]  B. Palsson,et al.  Metabolic Capabilities of Escherichia coli II. Optimal Growth Patterns , 1993 .

[4]  B. Palsson,et al.  Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use , 1994, Bio/Technology.

[5]  L. Dijkhuizen,et al.  Production of actinorhodin-related "blue pigments" by Streptomyces coelicolor A3(2) , 1996, Journal of bacteriology.

[6]  M. Bushell,et al.  A physiological model for the control of erythromycin production in batch and cyclic fed batch culture. , 1997, Microbiology.

[7]  B. Palsson,et al.  Toward Metabolic Phenomics: Analysis of Genomic Data Using Flux Balances , 1999, Biotechnology progress.

[8]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[9]  T. Kieser Practical streptomyces genetics , 2000 .

[10]  B. Palsson,et al.  Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. , 2000, Biotechnology and bioengineering.

[11]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[12]  B. Palsson,et al.  Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth , 2002, Nature.

[13]  B. Barrell,et al.  Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) , 2002, Nature.

[14]  G. Church,et al.  Genome-Scale Metabolic Model of Helicobacter pylori 26695 , 2002, Journal of bacteriology.

[15]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[16]  Kenneth J. Kauffman,et al.  Advances in flux balance analysis. , 2003, Current opinion in biotechnology.

[17]  B. Palsson,et al.  Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. , 2003, Genome research.

[18]  Growth limiting substrate affects antibiotic production and associated metabolic fluxes in Streptomyces clavuligerus , 2000, Biotechnology Letters.

[19]  A. Rozkov,et al.  Characterization of the metabolic burden on Escherichia coli DH1 cells imposed by the presence of a plasmid containing a gene therapy sequence. , 2004, Biotechnology and bioengineering.

[20]  J. Nielsen,et al.  Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. , 2005, Genome research.

[21]  Jens Nielsen,et al.  Evolutionary programming as a platform for in silico metabolic engineering , 2005, BMC Bioinformatics.

[22]  M. Bibb,et al.  Regulation of secondary metabolism in streptomycetes. , 2005, Current opinion in microbiology.

[23]  M. Poolman ScrumPy: metabolic modelling with Python. , 2006, Systems biology.

[24]  A. Kierzek,et al.  The use of genome scale metabolic flux variability analysis for process feed formulation based on an investigation of the effects of the zwf mutation on antibiotic production in Streptomyces coelicolor , 2006 .

[25]  Hongjuan Zhao,et al.  Manipulation of the physiology of clavulanic acid biosynthesis with the aid of metabolic flux analysis , 2006 .

[26]  Rishi Jain,et al.  Bayesian-based selection of metabolic objective functions , 2007 .